oriC environ speciates staphylococci What can be found by comparative genomics of related bacterial species

2005.12.16 @Juntendo Fumihiko Takeuchi J. Bacteriology (2005) vol.187, p.7292

Background: We compare the genomes of

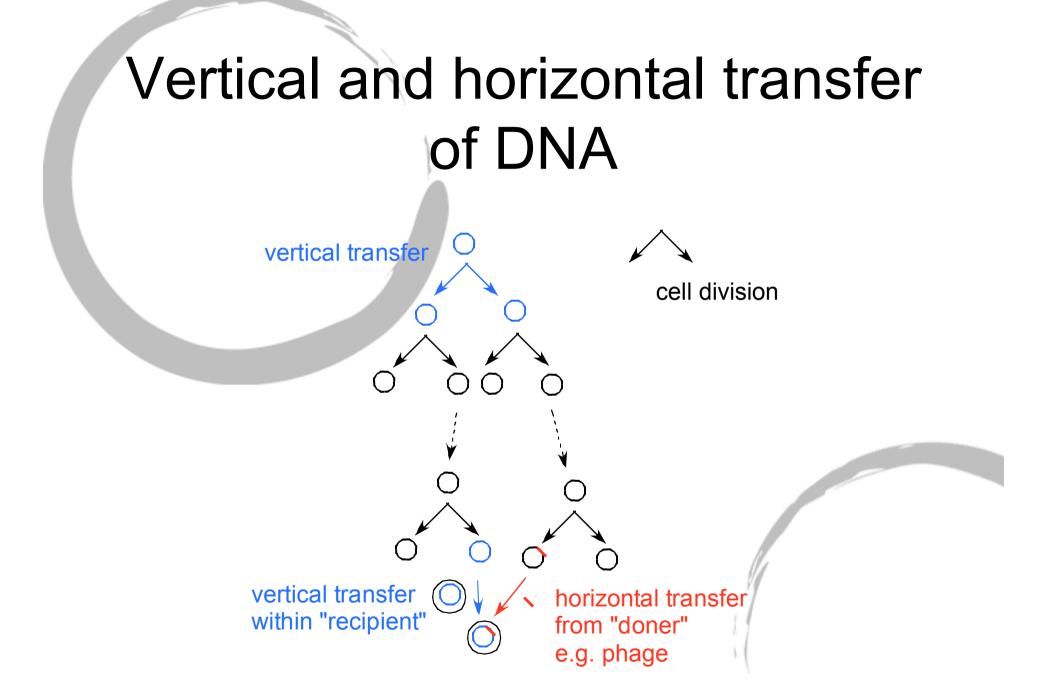
- Staphylococcus aureus
 - Major pathogen for hospital- and communityacquired infection
 - Notorious for its virulence and antibiotic resistance as in Methicillin-resistant S. aureus (MRSA)
- Staphylococcus epidermidis
 - Colonizes the skin of almost all humans
 - Benign but causes foreign-body infection
- Staphylococcus haemolyticus
 - Also among the normal skin flora
 - Remarkable for its historically early acquisition of antibiotic resistance

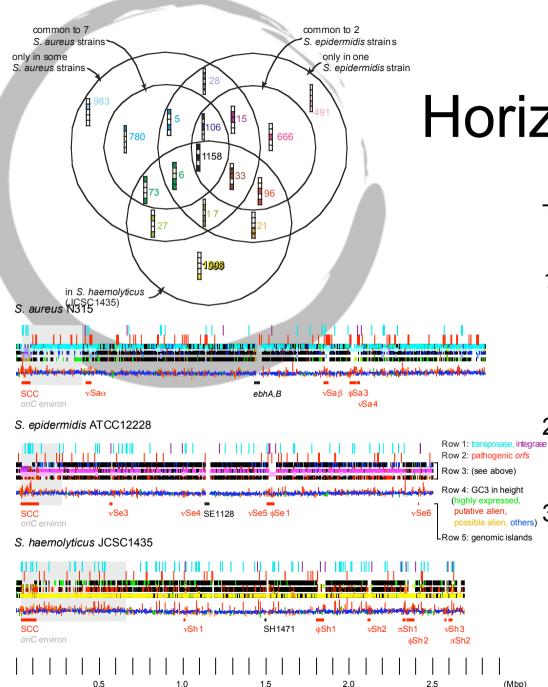
A fundamental concept: homologs

- open reading frames (orfs)
 - Genes encoding proteins

ſ	S. aureus								nidis	S. haemolyticus
	COL	MRSA2 52	MSSA4 76	Mu50	N315	NCTC8 325	MW2	ATCC1 2228	RP62a	JCSC1435
	2615	2656	2579	2714	2594	2810 (draft)	2632	2419	2494	2678

homologs


- orfs grouped by their nucleotide sequence similarity
- Definition: two orfs with quality ratio ≥70% by alignment belong to the same homolog
- e.g. the *homolog* of intercellular adhesion A (*icaA*) genes comprises
 - COL, #2565, icaA, intercellular adhesion protein A
 - MRSA252, #2608, icaA, glucosaminyltransferase
 - MSSA476, #2533, -, glucosaminyltransferase
 - Mu50, #2666, icaA, intercellular adhesion protein A
 - N315, #2458, icaA, intercellular adhesion protein A
 - NCTC8325, #2761
 - MW2, #2586, icaA, intercellular adhesion protein A
 - RP62A, #2243, icaA, intercellular adhesion protein A
- Two orfs that are homologous/orthologous/paralogous should belong to the same homolog


Two basic profiles of homologs

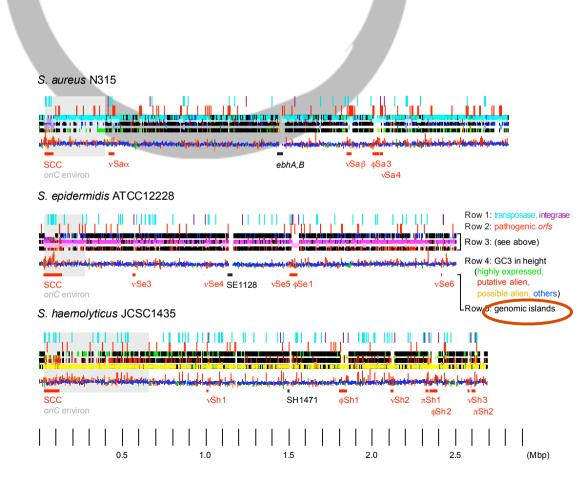
- Phylogenetic profile
 - Which species/strains share a *homolog*
- Location profile
 - Where on chromosome are the orfs (of a homolog) located
- e.g. icaA homolog

	S. aureus								rmidis	S. haemolyticus	
	COL	MRSA 252	MSSA4 76	Mu50	N315	NCTC8 325	MW2	ATCC1 2228	RP62a	JCSC1435	
Phylogen etic profile	+	+	+	+	+	+	+	-	+		
prome	Common to S. aureus							Partially epidermi	in S. dis	Not in <i>S.</i> haemolyticus	
Location profile	#2565 2763320 2764558	#2608	#2533	#2666	#2458	#2761	#2586		#2243		

 Viewpoint from comparative genomics: association of these profiles might tell us something...

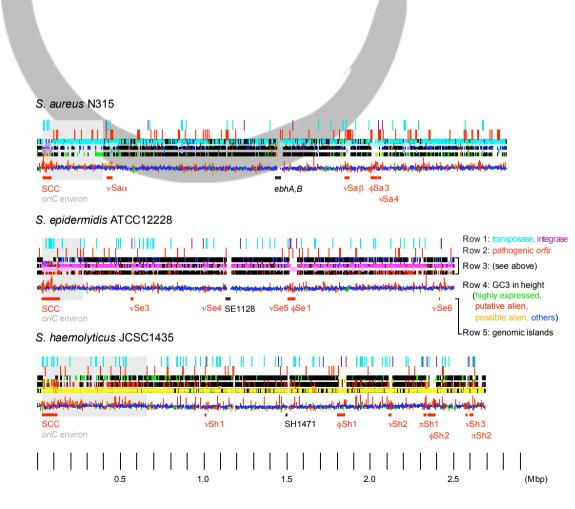
Horizontal transfer

The phylogenetic profile & location profile of *homologs* identify horizontal transfer.


- homologs are classified and color-coded according to their phylogenetic profile; homologs common to three species are represented by black segmented bars
 Each orf of a genome is
 - Each *orf* of a genome is colored according to the phylogenetic profile (of its belonging *homolog*)

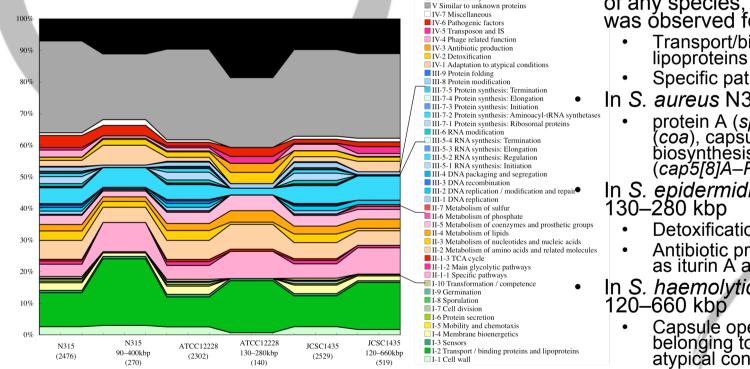
Chromosomal regions lacking the common homologs are suggested to be introduced by horizontal transfer

- Genomic islands (prophages, integrated plasmids, SCC, etc.)
- oriC environ


3.

Genomic islands

- Chromosomal regions (>10 kbp) putatively introduced by horizontal transfer
- Anomalous codon usage, biased GC3, and existence of integrase and transposase support their alien origin
- Differ between strains (even within a species)


oriC environ

- Located in the downstream of the origin of DNA replication (*oriC*), and defined as stretches of 20-kbp windows with <45% common *homologs*
 - 34,153–400,000 bp in S. aureus N315
 - 32,492–280,000 bp in *S. epidermidis* ATCC12228
 - 29,763–660,000 bp in *S. haemolyticus* JCSC1435
- Staphylococcus Cassette Chromosome (SCC) occupies the left part
- The remaining right part is specific to species (and conserved among strains within a species)
- Codon usage and GC3 is similar to the total chromosome
- The rest of the talk focuses on *oriC* environ

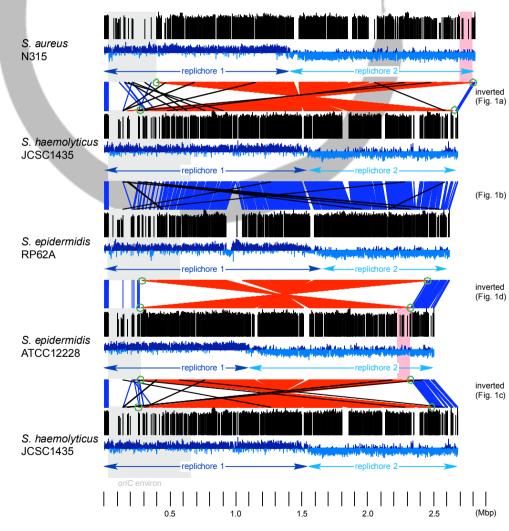
oriC environ (other than SCC): functional profile

■ VI No similarity

- In *oriC* environ (other than SCC) of any species, higher proportion was observed for
 - Transport/binding proteins and lipoproteins (I-2)
 - Specific pathways (II-1-1)
 - In S. aureus N315 90-400 kbp

protein A (*spa*), coagulase (*coa*), capsular polyscaccharide biosynthesis operon (cap5[8]A–P)

In S. epidermidis ATCC12228


- Detoxification (IV-2)
- Antibiotic production (IV-3) such as iturin A and surfactin
- In S. haemolyticus JSCS1435
 - Capsule operon (*capA–M*) belonging to adaptation to atypical condition (IV-1)
 - Mannitol-specific phosphotransferase system (PTS)

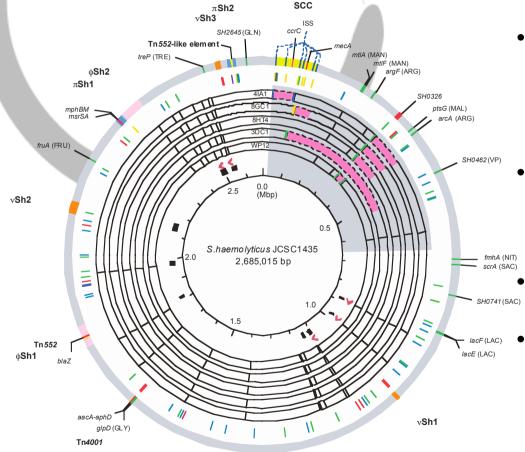
oriC environ (other than SCC): BLASTP top-hit species profile

- BLASTP top-hit species of and orf suggests the previous (or next) hosting species of the orf
- oriC environ (other than SCC) had fewer top-hit in the staphylococci's most related Bacillus species, implying their acquisition by horizontal transfer.

%	S. aureus N315	<i>S. aureus</i> N315 87–400 kbp	S. epidermidis ATCC12228	S. epidermidis ATCC12228 134–280 kbp	<i>S. haemolyticus</i> JCSC1435	S. <i>haemolyticus</i> JCSC1435 120–520 kbp
Bacillus	46	26	47	37	44	25
Listeria	13	6	11	10	11	7
Oceanobacillus	11	14	11	10	11	15
Streptococcus	5	14	5	9	6	12

Chromosomal rearrangements

The phylogenetic profile and location profile of *homologs* also indicate chromosomal rearrangements during vertical transfer

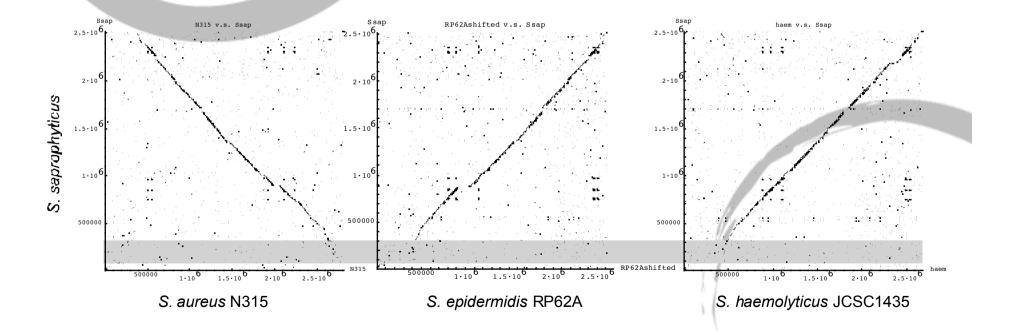

- For the common *homolog* that has only one *orf* in each genome, we connected the *orfs* by lines. This indicates the history of chromosomal rearrangements (inversion in red)
- Probable ancestor type was S. haemolyticus and S. epidermidis RP62a
- Their *ica* operons were in *oriC* environ
- S. aureus and S. epidermidis ATCC12228 were inverted around oriC, and remnats of oriC environ were found transolocated (pink highlight).
- ica operon of S. aureus was in the translocated region (2,550 kbp in N315).
- Loci flanking *ica* in *S. epidermidis* RP62a was found in 280 and 2,330 kbp of *S. epidermidis* ATCC12228 (= breakpoints of rearrangements) and the *ica* operon was missing in ATCC12228.

Summary

Phylogenetic profile and location profile of homologs could extract

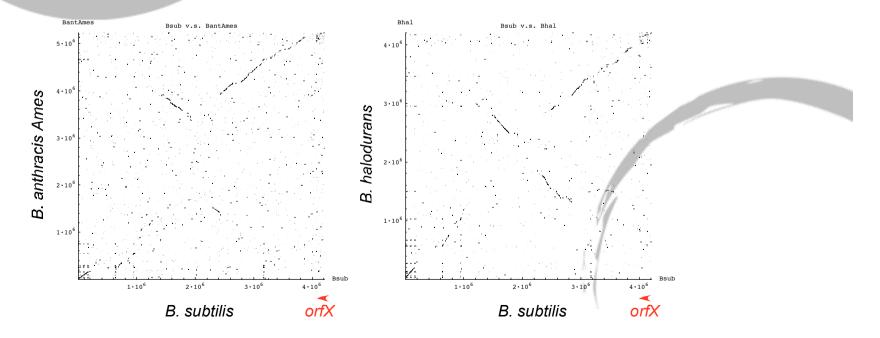
- Chromosomal regions transferred horizontally—genomic islands and oriC environ
 - Genomic islands were introduced in specific strains
 - oriC environ included SCC (varies by strains) in its left part, and a species-specific region in the right part
- Chromosomal rearrangements during vertical transfer
 - The inverted genomes had a remnant of *oriC* environ translocated in the upstream of *oriC*

Epilogue 1: *in vitro* chromosomal rearrangements in *oriC* environ [Watanabe]



- Method: prolonged (11 or 18 days) culture of S. haemolyiticus JCSC1435, followed by isolation of susceptible mutants
- Deletions (pink boxes) exclusively in *oriC* environ mediated by the numerous IS's
- Changes in biochemical properties
- --> oriC environ is not essential for cell viability but biochemically characterizes the species

Epilogue 2: *oriC* environ in *S.* saprophyticus


 Does oriC environ exist in the recently sequenced Staphylococcus saprophyticus genome?

• --> Yes

Epilogue 3: a region similar to oriC environ in Bacillus

- Does *oriC* environ exist in other species?
- --> Species-specific region around oriC exists in Bacillus species. However, orfX (where the SCC is integrated in staphylococci) is not located in this region (4,134,123..4,133,647 in B. subtilis)

