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We propose algorithms to enumerate (1) regular triangulations, (2) spanning regular
triangulations, (3) equivalence classes of regular triangulations with respect to symmetry,
and (4) all triangulations. All of the algorithms are for arbitrary points in general
dimension. They work in output-size sensitive time with memory only of several times
the size of a triangulation. For the enumeration of regular triangulations, we use the
fact by Gel’fand, Zelevinskii and Kapranov that regular triangulations correspond to the
vertices of the secondary polytope. We use reverse search technique by Avis and Fukuda,
its extension for enumerating equivalence classes of objects, and a reformulation of a
maximal independent set enumeration algorithm. The last approach can be extended
for enumeration of dissections.
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1. Introduction

Triangulations have been one of the main topics in computational geometry and
mathematics in recent years. Especially, some types of triangulations are found
to bridge geometric issues and algebraic ones. Regular triangulations are of such
a type.l'?3 For example, this subclass of triangulations has a close connection to
a well-known paradigm of computer algebra, Grobner bases, and also with theory
of discriminants, hypergeometric functions, etc. (see Refs. [1,2,4,5,6,7]). Regular
triangulations can be defined as a natural extension of the Delaunay triangulation
and also of lexicographic triangulations, a subclass of triangulations well-known in
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the theory of oriented matroids.

From the viewpoint of computational geometry, regular triangulations provide a
good framework where many known results for triangulations of a planar point set
can be generalized to higher dimensional cases. For instance, in the planar case, any
pair of triangulation can be transformed to each other by a sequence of so-called
Delaunay flips, but, even in three dimensional case, a Delaunay triangulation cannot
always be obtained from a non-regular triangulation by Delaunay flips.?® However,
restricting ourselves to the class of regular triangulations, such a result has already
been shown in any dimension.!'23 Also, there are several works in computational
geometry on regular triangulations such as Refs. [10,11].

The enumeration of (regular) triangulations is interesting from the viewpoint
of computer-aided mathematical research (e.g., see Refs. [4,7,12]). Also, it is use-
ful giving indications for algorithmic designs in computer graphics, finite element
method, etc., where triangulations of three-dimensional objects are frequently used.
(1) Enumeration of regular triangulations. We first propose an output-size
sensitive and work-space efficient algorithm for enumerating regular triangulations
of n points in d-dimensional space. It is known that the vertices of the secondary
polytope correspond to regular triangulations. Our algorithm enumerates these
vertices using the reverse search technique.!®'* The known results are summarized
using the so-called volume vector, and the algorithm is described in a simple way.
Its time complexity is O(d?s2LP(n—d—1, s)#7R), where s is the upper bound of the
number of simplices of all dimensions contained in one regular triangulation, and
LP(n—d—1, s) denotes the time required for solving a linear programming problem
with s strict inequality constraints in n — d — 1 variables, and #R is the number
of regular triangulations, which is bounded by O(n(d“)("’d’”). Its work-space
complexity is O(ds), which is best possible to retain one triangulation. Our time
complexity is proportional to the output size #R, and the working space is quite
small.

Two algorithms for enumerating regular triangulations have been proposed.

1. The algorithm by Billera, Filliman and Sturmfels' first characterizes the sec-
ondary fan dual to the secondary polytope by means of Gale transforms,
and then algorithmically by applying the hyperplane arrangement algorithm
in Ref. [15], the problem is shown to be solvable in O(n(#t1)(n=d=2)) time
and space. This algorithm is worst-case optimal for the so-called Lawrence
polytopes which form a very restricted class. However, the reduction has
a redundant part for other cases, and the number of regular triangulations
may be much smaller than the complexity of the arrangement. Thus, even if
a good algorithm for arrangements is available, an output-size sensitive and
work-space efficient algorithm is hard to obtain along these lines.

2. An output-size sensitive algorithm is given by De Loera.!? It is based on
breadth-first search enumeration, and is implemented using Maple. Since it is
based on breadth-first search, its work-space complexity is Q(#R), which is



prohibitively large even for small-size problems.

The algorithm presented in this paper is a refined version of Refs. [16,17,18], to-
gether with some new results for spanning triangulations, and has theoretical merits
as described above (codes are available from Ref. [19]). Practical merits of this algo-
rithm is seen in subsection 4.6. Preliminary computational results are also shown.
(2) Enumeration of spanning regular triangulations. Next, we consider
regular triangulations using all points. Some regular triangulations may not use
a point inside the convex hull, which may not be preferable for three-dimensional
applications in computer graphics and the finite element method. Triangulations
using all the points are called spanning, and an algorithm with similar complexities
is given to enumerate all spanning regular triangulations. Also, the diameter of the
secondary polytope, the vertices of which correspond to the regular triangulations,
is shown to be O(n4+2).

(3) Enumeration of equivalence classes of regular triangulations. As men-
tioned above, regular triangulations have connection to many mathematical con-
cepts such as Grobner bases, and in such cases a given point configuration is mostly
degenerate, and furthermore has symmetric structures. Then, enumerating only a
representative triangulation from each equivalence class induced by the symmetry
becomes crucial, since the number of triangulations equivalent under the symmetry
may become large.

De Loera’s program can take this symmetry into account, and he enumerates
the triangulations, all of which are regular, for the case of A x Az and Ay x
A4'%20, When the dimensions become larger, even the number of classes divided
by symmetry becomes huge. De Loera is using breadth first search in his program,
so all visited triangulations should be kept in memory, and the memory constraint
becomes serious in larger cases.

We propose an algorithm to enumerate equivalence classes of objects by reverse
search. And then apply this to the enumeration of equivalence classes of regular
triangulations with respect to the symmetry of symmetric polytopes. Applications
to products of two simplices and hypercubes are shown. The algorithm runs in
output-size sensitive time, i.e., in time proportional to the number of classes, and
requires memory only several times that of one triangulation. An enumeration for
equivalence classes of object is also proposed in Ref. [21].

(4) Enumeration of triangulations. We finally propose an algorithm to enu-
merate all triangulations, regular or not, in general dimension. De Loera found a
nonregular triangulation in Az x A3. Enumerating all triangulations, regular or not
is of interest mathematically. Algorithms to enumerate triangulations in dimension
two can be found, for example in Ref. [22]. However, for dimension higher than
two, though there are some results,?® there is no efficient algorithm to enumerate
all triangulations. (Though not published, a recent algorithm?* seems to enumerate
efficiently triangulations in general dimension, or even for oriented matroids.) Our
algorithm (extended from Ref. [25]) enumerates them for arbitrary configurations



of points. We characterize triangulations as a subclass of maximal independent sets
of the intersection graph of the maximal dimensional simplices. We reformulate
a general maximal independent set enumeration algorithm, for the case of graphs,
and apply it to this intersection graph. The time complexity is proportional to the
number of maximal independent sets, the objects we really enumerate. When tri-
angulations form a proper subset of the maximal independent sets, the gap between
them becomes a loss. If this gap is small, this algorithm is efficient, the first efficient
one, to enumerate all triangulations. The existence of this gap is determined geo-
metrically by the configuration of points. In two dimension this does not happen,
and in three dimension, we have Schonhardt’s polyhedron (cf. 10.2.1 of Ref. [26])
for example. The memory required in this algorithm is only about the size of two
triangulations.

We apply this to the case of the product of two simplices. The number of
the simplices, which correspond to the vertices of the intersection graph, increases
exponentially with dimension, but we cope with this by using their correspondence
with spanning trees of a bipartite graph, and keeping in memory one simplex, or
spanning tree, at once.

An implementation of this algorithm in Mathematica is available from Ref. [19].
An extension of our formulation for enumerating dissections is also shown.
Outline of this paper. We begin by a brief explanation of reverse search, and
then give our formulation of reverse search for equivalence classes of objects (section
2). Next, we summarize the definitions and properties of regular triangulations and
the secondary polytope (section 3). We give our algorithm to enumerate regular
triangulations (section 4). We also consider spanning regular triangulations, and
investigate the diameter of the secondary polytope (section 5). Next, we present the
algorithm for the enumeration of equivalence classes of regular triangulations, and
apply it to products of simplices and hypercubes (section 6). We summarize the
general maximal independent set enumeration algorithm, and show our formulation
for graphs (section 7). Finally, we apply this to the enumeration of all triangulations
or dissections (section 8).

2. Reverse Search

Avis and Fukuda introduced an enumeration technique called reverse search.'* It
runs in time proportional to the number of objects to be enumerated, and requires
memory only of several times the size of an object. We first explain their structure
for enumeration (subsection 2.1), and then show our extension for enumeration of
equivalence classes of objects (subsection 2.2).

2.1. Reverse Search

Reverse search is a general technique for enumeration. It performs at the same
output-size sensitive time as breadth first search (BFS) or depth first search (DFS),
but requires memory only of twice the size of an object among those to be enumer-



ated. BFS and DFS need output-size sensitive memory to store all reached objects.
To save memory, in addition to the adjacency relation, which is necessary for BFS
and DFS, parent-children relation is required for reverse search.!3:14

First we state the adjacency and parent-children relation for reverse search,
which we call here a reverse search structure. It defines a tree structure underlying
the graph of adjacency relation.

Definition 1 (reverse search structure Ref. [14]) (S, 4, Adj, f) is a reverse search
structure if it satisfies the followings. (1) S is a finite set. (2) § € IN. (3)
Adj: Sx{1,...,0} = SU{0}. For anya € S andi,j € {1,...,0}, (i) Adj(a,i) #a
and (ii) if Adj(a,7) = Adj(a,j) #Z 0 theni=j. (4) f: S — S is the parent function:
f(a) = a or Adj(a,i) for somei. (5) There exists a unique root object r € S: an
object such that f(r) = r. For any other object a # r, there exists n € IN such that
f(a) =r.

S is the set of objects to be enumerated. The maximum degree of the adjacency
graph is §. For each object a € S the adjacency function Adj returns its indexed
adjacent object, or sometimes () if the object has degree less than §. This index is for
use in the enumeration algorithm. We always assume that the adjacency relation
is symmetric: if Adj(a,i) = b then Adj(b,j) = a for some j.

The information of §, Adj, f and r is given to the reverse search algorithm, and

the algorithm returns S as its output. Actually r is not necessary, because it can
be found by applying f several times to an object.
Theorem 2 (Corollary 2.3. of Ref. [14]) For the reverse search structure in
definition 1, the reverse search algorithm in Ref. [14] enumerates all objects in
S. The time complezity is O(d (time(Adj) + time(f)) #S), where time(Adj) and
time(f) are the time necessary to compute functions Adj and f. The memory re-
quired is twice the size of an object in S.

2.2. Rewverse Search for Equivalence Classes

Later, we give an algorithm to enumerate equivalence classes of regular trian-
gulations. This is based on the enumeration of equivalence classes of objects by
reverse search we propose here.

We use ~ for an equivalence relation on the objects S. The equivalence class of
an object a is denoted by [a]. By rep we denote the representative function: for any
object a, rep(a) ~ a, and for any objects a, b, a ~ b if and only if rep(a) = rep(b).
The composition (repof)(a) denotes rep(f(a)). The following definition ensures
that we can reach the “root class” by applying rep of successively to any (element
of an) equivalence class.

Definition 3 (reverse search structure for equivalence classes) (S5,4,Adj, f,
~,rep) is a reverse search structure for equivalence classes if

o (S,0,Adj, f) is a reverse search structure.

e ~ is an equivalence relation and rep is a representative function on S.



e a adjacent to b and ¢ ~ a implies the existence of an object d adjacent to c
and d ~ b, for any a, b and c.

e The root object r of the original reverse search structure is the only object
with (repof)(r) = r. For any other object a # r, there exists n € IN such that
(repof)™(a) = r.

Theorem 4 For the reverse search structure for equivalence classes in Definition 3,
we can enumerate the equivalence classes of objects by the following reverse search
structure. The functions Adj and f in the right hand are those of the original
reverse search structure as in Definition 1.

o S/~={[a] : a € S} is the set we want to enumerate

e § is the same as the original reverse search structure

[Adj(rep(a), )] E'f A(dj)(]rep(g);i) # 0 and [Adj(rep(a),i)] #
rep(a)] an
e Adj([a],i) = if [Adj(rep(a),i)] # [Adj(rep(a),j)] for any
1<
] otherwise

o f(la]) = [f(rep(a))]

The time complezity is O(d(5(time(Adj) + time(rep)) + time(f))#(S/ ~)) where
time(rep) is the time to compute the representative object of the class of an given
object, and time(Adj) and time(f) is the time as in the original reverse search
structure. The memory required is § + 2 times the size of an object.
Two classes are adjacent if and only if there are adjacent objects from each of them.
Any object of a class has an adjacent object in all the class-wise adjacent classes.
Thus the degree of adjacency for the reverse search of equivalence classes is not
larger than the degree for the original reverse search, and we can use the same §.
The following is a special case of reverse search, given by an adjacency function
and a total order on the objects S.
Definition 5 (reverse search structure with total order) (S,4, Adj, <) is are-
verse search structure with total order if

e (S,0,Adj) satisfies conditions (1) to (3) in Definition 1.
o < is a total order on S.

o Only the mazimum element v of the total order satisfies max.({a € S :a =
Adj(r,i) for some i} U {r}) =r.

Proposition 6 A reverse search structure with total order (S,4,Adj, <) together
with

o f(a) =max<({be S:b= Adj(a,i) for somei}U{a})



becomes a reverse search structure.
We introduce a reverse search structure for equivalence classes for this version.

Definition 7 (reverse search structure for equivalence classes with total order)
(S,0,Adj, <,~) is a reversesearch structure for equivalence classes with total order if

e (S,0,Adj, <) is a reverse search structure with total order
e ~ is an equivalence relation on S.

e a adjacent to b and ¢ ~ a implies the existence of an object d adjacent to ¢
and d ~ b, for any a, b and c.

Proposition 8 The reverse search structure for equivalence classes with total order
together with

e f(a) = max<({b€ S :b=Adj(a,i) for somei} U {a})
¢ rep(a) = max([a])

becomes a reverse search structure for equivalence classes.

3. Regular Triangulations and the Secondary Polytope

Regular triangulations form a subset of triangulations. They correspond to the
vertices of a polytope, the secondary polytope, which is determined uniquely by
a configuration of points. We later propose an algorithm to enumerate regular
triangulations by applying a vertex enumeration method to this secondary polytope.
Refer to Refs. [1,2,3,5,27] for further information on regular triangulations.

Let A ={ai,...,a,} C IR? be a configuration of points, with their convex hull
conv(A) having dimension d. We are interested in triangulations of conv(A). We
only consider triangulations whose vertices are among the given points A.

Two simplices o; and o intersect properly if their intersection o; No; is a (pos-
sibly empty) face of both simplices. This is equivalent to o; N g; = conv(vert(c;) N
vert(o;)), where vert(o;) and vert(o;) are the sets of vertices of ; and o;. Simplices
intersect improperly if they are not intersecting properly.

A set of d-simplices {o1,...,0,} whose vertices are among A is a triangulation
of A if (1) any pair of simplices o;, o; intersect properly and (2) the union of
the simplices U {o1,...,0m} is equal to conv(A). The whole set of d-simplices is
denoted by S.

A triangulation T of A is regular if there exists a vector ¢ : 4 — IR having

the following property. For P = conv { (lel) yeees (ﬁ: ) }, and 7 the projection
7 : R & R? with 7 (wﬁl) =z, T ={n(F): F is a lower facet of P}. Here F

is a lower facet, if for ¢ € R%, ¢o € R defining F = {x € P:cx =cp} with ex < ¢
being valid for P, the condition ¢y < 0 is satisfied. Notice that this definition admits
regular triangulations which do not use some of the given points, while vertices of



conv(A) are necessarily used. Regular triangulations using all points are treated in
section 5.

Let T be a triangulation of A. The volume vector for T is a vector ¢, : A - R
with ¢r(ai) = X, 1.0, evert(s) VOL(0), Where vol(o) is the volume and vert(c) is
the set of vertices of a d-simplex o.

The secondary polytope X(A) of a point configuration A is the convex hull of
the points ¢ in R4 for all triangulations T of A.

A subset of k + 2 points from A is a circuit if the k + 2 points and any of the
k + 1 points have a convex hull of dimension k. The points forming a circuit have
exactly two triangulations. A circuit consisiting of &+ 2 points from 4 is supported
by a triangulation T of A (which consists of d-simplices), if for one triangulation X
of the circuit (which consists of k-simplices), the d-simplices U among T having a
k-simplex from X as a face comprises the product of the k-simplices X and some set
Y of (d—k — 1)-simplices: U = X x Y (which becomes X x {#} = X when k = d).
In such case, the d-simplices made as the product of the other triangulation X’ of
the circuit and the (d — k — 1)-simplices Y, together with T'\ U become another
triangulation T/ = (T \ U) U (X' x Y) of A. The new triangulation is transformed
from T by o flip along the circuit. In this case, T can also be transformed from T’
by a flip.

Regular triangulations are known to correspond to the vertices of the secondary
polytope X(A). The vertices connected by an edge in the secondary polytope are
“similar”: they can be modified each other by flips.

Theorem 9 (Chapter 7. Theorem 1.7., Theorem 2.10. of Ref. [2]) The sec-
ondary polytope (. A) has dimension n—d—1, and its vertices correspond one-to-one
to the volume vectors of the regular triangulations of A. The edges are between ver-
tices whose corresponding reqular triangulations can be transformed each other by a
flip.

It should be noted that a new triangulation obtained by applying a flip to a regular
triangulation is not necessarily regular. During enumeration, we visit a new trian-
gulation from a known one using flips. Thus, we have to check the regularity for
each newly obtained triangulation.

The next lemma, is an implication of the upper bound theorem of convex poly-
topes and spheres.?®
Lemma 10 The number of the d-simplices and all of their faces in a triangulation
of A is bounded by the number of the faces with the same dimension of a cyclic
(d + 1)-polytope with n vertices. Especially, the number of d-simplices is bounded
from above by O(nl(4+1)/2]),

For the rest, s denotes the maximum number of all the d-simplices and their faces
used in a regular triangulation of A, and s4 the maximum number of the d-simplices.

4. Enumeration of Regular Triangulations

We present an algorithm for the enumeration of regular triangulations (subsection



4.1). We use our formulation of reverse search, defined in Definition 5 and Proposi-
tion 6. We next describe the data structure for representing a regular triangulation
for efficient manipulation (subsection 4.2). Then, we show that it can be checked
by linear programming whether a given triangulation is regular (subsection 4.3).
Also, how to obtain an initial regular triangulation is explained (subsection 4.4).
The complexities achived by these treatments are given (subsection 4.5). Finally,
some prelimary computational results are shown (subsection 4.6).

4.1. Enumerating Regular Triangulations

Triangulations are defined to be adjacent if they can be transformed by a flip
(see Section 3).
Definition 11 (reverse search structure for regular triangulations) The re-
verse search structure for regular triangulations of an arbitrary point configuration

A is
o S = {regular triangulation}

e Adj(T,i) = (the i-th regular triangulation which can be transformed from T by

a flip)
The index i in the definition of Adj(T), ) is not of importance. A vector (z1,...,%,) €
RR" is smaller than a vector (y1,...,yn) € R™ in lezicographic order, if for some 4,

1<i<n, z; <y;, and z; = y; for any j <.

Definition 12 (total order on regular triangulations) We introduce a total or-
der on regular triangulations by comparing their volume vectors in lexicographic
order.

Since regular triangulations correspond to the vertices of the secondary polytope
Y (A), and lexicographic order is same as ordering the vertices by the inner product
with a vector (N, N* 1 ... N) with sufficiently large N, the last condition in
Definition 5 is satisfied. Thus, the reverse search structure and the total order
above satisfy the conditions of reverse search structure with total order. Thus, we
can enumerate all regular triangulations using Proposition 6. The reverse search
tree is the traces of the simplex method from all the vertices for the secondary
polytope under the above mentioned cost vector.

Theorem 13 (enumerating regular triangulations) The structure of Defini-
tion 11 and 12 enables reverse search. The time complexzity is O(d?s?’LP(n — d —
1,8)#R), where s is the upper bound of the number of simplices of all dimensions
contained in a regular triangulation and LP(n — d — 1,s) 4s the time required to
solve a linear programming problem with s strict inequalities constraints inn—d—1
variables, and R is the set of reqular triangulations. The memory required is O(ds).

Proof. The degree §, time and space complexity for Adj and f are given in
Proposition 16. O



4.2. Data Structure for a Triangulation

We represent a simplex by the set of the indices of its vertices. For each trian-
gulation, we keep the graph of its face poset in memory. This requires O(ds) space,
where s was the maximum number of simplices of all dimensions used in a regular
triangulation of A.

Besides this graph, we maintain all circuits supported by the current triangu-
lation. Each circuit is conceptually represented by a (k + 2)-tuple (k < d) of the
indices of the points in the circuit. For a circuit with & + 2 points, its convex hull
consists of at most k + 1 k-simplices, and in practice we represent the (k + 2)-tuple
of points implicitly by recording those simplices. Any k-simplex belongs to at most
k + 1 of the circuits consisting of more than one simplex. And, there are no more
than n circuits consisting of one simplex. Thus, the number of circuits is bounded
by O(ds), and also the space required for this implicit representation is O(ds).

For each regular triangulation, we also maintain its volume vector.

When updating triangulations by a flip, we have to maintain these data struc-
tures. The face lattice can be updated in O(ds) time. Since the computation of the
volume of a simplex can be done in O(d?) time, the volume vector can be computed
in O(d®s) time. By a flip, at most (d + 1)s of the circuits consisting of more than
one simplex are deleted or inserted to the list of the circuits. Computing all such
circuits can be done in O(d*s) time. Checking whether such circuit is supported
by the triangulation can be done in O(ds) per each. There are at most n circuits
consisting of one simplex. Computing such circuits can be done in O(d*sn) time.
Hence, the list for a flip can be computed in O(d*s?) time.

When a new triangulation is computed, we have to check its regularity by solving
a linear programming problem in O(LP(n—d—1, s)) time, as described in Lemma, 14
below. The time complexity to solve a linear programming problem with n variables
and m constraints is denoted by LP(n, m). By interior point method, this takes n®L
operations, where L is the size of the input. In the sequel, we assume that the time
complexity to update the data structure by a flip is dominated by O(LP(n—d—1, s)).

A point configuration in dimension d is in general position if any of its d + 2
points has a convex hull of dimension d. For such point configuration, we only have
to hold the graph of the d and (d — 1)-simplices. In this case, both the space and
time complexity can be reduced.

4.3. Checking the Regularity of a Triangulation

In the existing literature, the regularity check is done in the dual space. We
here give a simple primal approach. A triangulation of a point configuration A is
regular if the d-simplices are the projection of the lower facets of a (d + 1)-polytope
P in R¥. Let w; represent the weight of p, lifting each point to R4, For each
(d—1)-face o of the triangulation not on the boundary of conv(A), the corresponding
(d—1)-face F of P is a lower face (i.e., its defining inequality F = {x € P : cx = ¢o}
with ex < ¢o valid for P satisfies ¢g < 0). The (d — 1)-face o is shared by two d-
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simplices in the triangulation. Suppose the two simplices have vertices {py, ..., P4}
and {p1; e ;pd+1}. Then, we have

1 ... 1 1

|
Po ' Pg Pat+1 Dy - P > 0. (*)
Wwo v Wq Wy 0 d

Lemma 14 A given triangulation is reqular if and only if there is a solution w
satisfying (x) for each pair of adjacent d-facets {py,---,pq} and {py,---,Pay1}-
Proof. The “only if” part is indicated above. For the “if” part, we construct a
piecewise linear function by lifting the d-simplices in the triangulation by a solution
w. For regularity, we need to show this function is convex. If not, two points exist
on the function, with their middle points in R%*! having values smaller than on
the function. By considering the restriction of this function to a plane including
the two points and parallel to the (d + 1)-th axis, the argument reduces to the case
d =1, which is elementary. |
Thus, in a primal way, the regularity can be checked by linear programming. It
is easy to see that for a fixed simplex we can set w; = 0 for each point of the simplex
without changing the existence of the solution. The number of (d — 1)-simplices in
a regular triangulation is smaller than s. It can also be bounded by (d + 1)sq/2.
Hence, this linear programming is to check the existence of a solution ton —d — 1
variables and at most s constraints. Denote by LP(n — d — 1, s) the time required
to solve this linear programming problem.
Proposition 15 The regularity of a triangulation can be judged in LP(n—d—1,s)
time.

4.4. Constructing an Initial Regular Triangulation

Our algorithm requires a regular triangulation to start. This can be an arbitrary
regular one. For conceptual simplicity and some technical merits, we may consider
two candidates for the initial one. One is a regular triangulation whose volume
vector is lexicographically maximum among all volume vectors. The other is the
Delaunay triangulation. In the latter case, we can use an algorithm for convex hulls
in Refs. [13,29,30]. Ref. [10] gives an algorithm which directly constructs a regular
triangulation from an assignment of weights, while its time complexity is analyzed
by means of randomized analysis since the algorithm uses the flipping operation as
a primitive.

The lexicographically maximum triangulation can be computed by starting with
any regular triangulation and transforming it by flips towards the lexicographic
maximum along a path on the secondary polytope. When the input points in A
are in general position, the optimal regular triangulation can be obtained simply
by considering a triangulation formed by points on the convex hull boundary and
a; such that all simplices have a; as a vertex. Such a triangulation is uniquely
determined.

11



In any case, the time necessary for obtaining the initial regular triangulation is
negligible in comparison with the time necessary for the rest of the enumeration.

4.5. Complexities

Proposition 16 (1) For each vertex in the reverse search tree, there are at most
0 = O(ds) adjacent triangulations.
(2) For a vertex in the reverse search tree, its i-th adjacent vertex can be computed
in time(Adj) = O(LP(n — d — 1, 5)) time and O(ds) space.
(3) For a vertex in the reverse search tree, its parent can be computed in time(f) =
O(dsLP(n —d — 1, s)) time and O(ds) space.

Proof. (1) Asin subsection 4.2, for any triangulation the number of supported
circuits is bounded by O(ds).
(2) This can be done by updating the triangulation along the i-th circuit and check-
ing its regularity. The complexity is from subsection 4.2, 4.3.
(3) To find the parent, we enumerate all adjacent triangulations, check their regular-
ity, and find the lexicographically maximum one. There are at most O(ds) adjacent
triangulations and each of them can be computed separately. O

4.6. Preliminary Computational Results

We here describe computational results for randomly generated points. Con-
cerning the results for regularly structured point sets which are interesting from
a mathematical viewpoint, see Refs. [16,17]. These results shown here are still
preliminary.

Our algorithm is implemented in C language (codes are available from Ref. [19]).
Experiments are done on Sun Bladel00 with 1.28 GB memory. Exact arithmetic is
realized by the GNU MP library for arbitrary precision integer and rational number
arithmetic. Linear programming problems are solved by the simplex method with
Bland’s rule. The space complexity is a little more than O(ds) for speeding up the
computation in this implementation. Our implementation also works for degenerate
inputs.

We here show the number of regular triangulations and the time used for enu-
meration when points are generated as random integer points in the d-cube with
edge length 1000. The real computational time of enumeration per one triangulation
is increasing only mildly for d or n (Table 1, Figure 1).

Our system can solve much larger cases as follows. For example, the system can
partially enumerate a set of 24 degenerate points in 20 dimensions, arising from a
graph, such that their regular triangulations consist of at most 306 triangles (in this
case the total number of triangulations is huge and we could only enumerate part
of them, and yet some useful information, such as the existence of a nonregular
triangulation which can be transformed by a flip from a regular one, could be
obtained from partial computational results).
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Table 1. Average (minimum-maximum) number of regular triangulations enumerated (above),
and time in seconds used (below) for twenty random configurations of n points in dimension d.

n

a

5 6 7 8 9
T "8 (8-8) 16 (16-16) 32 (32-32) 64 (64-64) 128 (128-128)
2 14.45 (14-15) 49.30 (42-57) 170.85 (132-227) 715.80 (539-887)
3 25.50 (25-29) 144.80 (133-180) 1037.90 (840-1548)
4 42.45 (41-44) 413.80 (377-495)
5 67.00 (65-69)

4 n

5 6 7 8 9
T T0.58 (0.54 0.75) 2.50 (1.06-3.08) 11.60 (11.02-12.07)  46.01 (35.50 49.42) 126.40 (96.00 128.00)
2 2.02 (1.81-2.70) 18.82 (13.52-24.72) 148.60 (98.7-213.51) 1370.10 (858.66-1941.70)
3 8.05 (7.16-9.86)  145.10 (116.44-203.87) 2152.04 (83.99-3280.7)
4 31.49 (26.61-36.50)  1212.54 (942.27-1816.29)
5 108.73 (99.25-124.14)

seconds/triangulation

\x\

5 6 7
n

®
©

Fig. 1. Real computational time of enumeration in seconds per one triangulation. Averaged for
twenty random configurations of n points in dimension d.

5. Enumeration of Spanning Regular Triangulations

We call a regular triangulation using all points spanning. We show that all spanning
triangulations are connected by flips, and show their enumeration. The traces of the
simplex method from vertices in the secondary polytope under the cost vector wp
with wp; = ||la;|| = E‘;:l(ai,jf becomes the reverse search tree. We also consider
the diameter of the secondary polytope using the arguments for this enumeration.

The first question concerning spanning regular triangulations is whether their
corresponding vertices are connected by edges in the secondary polytope. To in-
vestigate this, consider the polytope obtained by lifting the points A by wp. By
perturbing wp, if necessary, we can assume that there are exactly d + 1 points on
any of the lower facets of this polytope. The corresponding regular triangulation is a
Delaunay triangulation. We consider transforming a spanning regular triangulation
into this Delaunay one.

Lemma 17 From a spanning regular triangulation, we can generate a sequence of
reqular triangulations to one Delaunay triangulation by flips such that
(1) all the regular triangulations appearing in this process are spanning, and the
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inner product of wp and the volume vector of a regular triangulation is strictly
decreasing, and furthermore
(2) a circuit used in a flip in the sequence is never used again in this process.

Proof. For each triangulation A, we consider a piecewise linear function g, ()
on conv(A) such that g, (a;) = wp; on points a; used in the triangulation, and g,
linear on each d-simplex of the triangulation. Let Aqp, be the regular triangulation
for the weight vector wp. Then, by calculating the volume under piecewise linear
functions NPREIN

/ Inw (a:)d:z:</ ga(x)dx
conv(.A) b conv(A)

holds for any triangulation A except Aqy,. Noting that this integral is for a piece-
wise linear function, the following holds

()dz < (d+1) / oa@)dz = (wp, @, ),

(wo.ps, ) =@+D) [ g,
D conv(.A)

conv(A) D

where (w, ) is the inner product of w and ¢, and ¢ A, Pa are the volume
vectors of Aq, and A.

Since for wp all the lifted points are on the boundary of their lower hull, for
any triangulation, a flip which makes a point unused in any simplex necessarily
increases the inner product of wp and the volume vector. Consider a linear pro-
gramming problem of minimizing a linear function with wp as its cost vector on the
secondary polytope. For a vertex corresponding to a non-Delaunay regular trian-
gulation there exists an adjacent vertex connected by an edge whose inner product
with wp strictly decreases. Hence, performing the corresponding flip, a new trian-
gulation with smaller inner product value is obtained and this flip does not destroy
the spanning property. Thus, (1) is shown.

For the sequence of triangulations Ay, ..., A where Ay, is the Delaunay trian-
gulation, we see

9a, (@) 2 gp,(®) (i < j5 @ € conv(A)).

This is because for lifted points corresponding to a circuit Z their convex hull is a
full-dimensional simplex in the lifted space and have upper and lower boundaries.
Each of the upper and lower boundaries corresponds to a triangulation of Z in the
original space. Since any circuit has two triangulations, these two are such ones,
and hence strict above-below relation holds. If a circuit Z is used twice for flips for
i and j with i < j, g\ (z) = 9, (z) for x in the interior of conv(Z), while by the
argument above g, (2) > gu,,. (®) > gu, (%), a contradiction. O

Theorem 18 All the spanning regular triangulations can be enumerated in O(d*s?
LP(n —d — 1, 8)#Rspanning) time and O(ds) working space, where Rspanning 5 the
set of spanning regular triangulations.
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Proof. We use similar arguments as for the enumeration of regular triangu-
lations. The objects to be enumerated are S = Rspanning the spanning regular
triangulations. When the i-th circuit is formed by a simplex and a point in its
interior, we set Adj(T,4) = 0. Otherwise, Adj(T,i) is same as the case of regular
triangulations. We introduce a total order on Rspanning by defining a triangulation
with the inner product of its volume vector and wp smaller, to be larger. When
there is a tie, we compare their volume vectors in lexicographic order. Then the
claim holds similarly as Theorem 13: the conditions in Definition 5 are satisfied and
the complexities are as in Proposition 16. The reverse search tree is the traces of
the simplex method from vertices corresponding to spanning regular triangulations
in the secondary polytope under the cost vector wp. O

The arguments in Lemma 17 can be further utilized as follows.
Theorem 19 The diameter of the secondary polytope is O(n?+?).

Proof. Since the number of circuits is bounded by O(n?t2), and the piece-
wise linear function monotonically changes downwards also for non-spanning regular
triangulations. O

In Ref. [1], the authors construct the arrangement of O(n?*+2) hyperplanes whose
cells correspond to the vertices of the secondary polytope, and two cells in the
arrangement are adjacent each other if and only if the corresponding vertices of
the secondary polytope are connected by an edge. From this, Theorem 19 can be
obtained because any two cells in the arrangement are connected by a sequence of at
most O(n4+?) adjacent cells. However, the sequence from any regular triangulation
to the Delaunay triangulation can be found by the arguments in Lemma 17 and
Theorem 19.

6. Enumeration of Equivalence Classes of Regular Triangulations

In section 2, we showed an extension of reverse search for enumeration of equiva-
lence classes of objects. In section 4.1, we gave a structure to enumerate regular
triangulations. We combine these results and give an algorithm for the enumeration
of equivalence classes of regular triangulations (subsection 6.1). The equivalence for
the classes reflects the symmetry of the given point configuration. We also show ap-
plications to products of two simplices (subsection 6.2) and hypercubes (subsection
6.3).

6.1. Enumerating Equivalence Classes of Regular Triangulations

We define symmetries of point configurations by groups. A point configura-
tion may be the set of vertices of a symmetric polytope, and the group a set of
transformations which do not change the polytope.

Let G be some group of affine maps which define bijections on conv(A). These
maps define bijections on the points 4. A bijection on conv(A) can be determined
by its action on 4. So we can regard G as a subgroup of the symmetric group Sy,
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consisting of elements satisfying the conditions of affine bijectivity. We define an
equivalence relation using this group.

Definition 20 (equivalence on simplices and triangulations) Let g € G.
e G acts on A={ai,...,a,}.

e The action of G on a simplex of A is induced by the action on its vertices:
gconv{a;,,...,a;, } = conv{ga;,,...,9a;, }.

o The action of G on the triangulations of A is induced by the action on the
simplices: gT = {go : 0 € T}.

o The action of G on the vertices, simplices or triangulations defines an equiv-
alence relation on each of them: two elements are equivalent if they can move
to each other by an element of G. These equivalences classifies these sets.

Since G is a set of affine bijections, it maps a simplex to a simplex, and a

triangulation to a triangulation. Since affine bijections only relabel the name of the
vertices, for any g € G two triangulations 77 and 75 can be modified along a circuit
if and only if g7} and gT» can. Thus, the definition of equivalence class on (regular)
triangulations satisfy the last condition of Definition 7, and the conditions for a
reverse search structure for equivalence classes with order are satisfied. Theorem 4
leads to the following.
Theorem 21 (enumerating equivalence classes of regular triangulations)
By the reverse search structure, total order and equivalence relation defined in Def-
inition 11, 12 and 20, we can enumerate the equivalence classes of reqular triangu-
lations with respect to symmetry. The time complexity and required memory are as
in Theorem 4. Time complexities for time(Adj) and time(f) are the same as the
case of Theorem 13 and time(rep) in general is as in Lemma 22.

Lemma 22 The representative of an equivalence class is the mazimum element.
The time complezity time(rep) for finding the representative is O(n#G).

Proof. Judging the order between two volume vectors can be done in n time.
By checking all actions of GG, we can obtain the above time complexity. O

6.2. Products of Two Simplices

We are interested in enumerating the triangulations for products of two sim-
plices. We take as the standard d-simplex A, the convex hull conv{es,...,e4+1}
in R, We write e; or J; for unit vectors with i-th or j-th element one and the
rest zeros. The product of two standard simplices A, x A; is

€;
f;

Our objects to enumerate are the triangulations of A = vert(Ax x A;), where
vert(Ag X A;) are the vertices.

AkxAl:conv{< ) e]Rk+’+2:ie{1,...,k+1},j€{1,...,l+1}}.
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The product Ay, x A; has a symmetric structure: even if we commute the axes
of each simplex, the shape of the product does not change.

Definition 23 We formulate the symmetry of Ay X A; by the action of the direct
product of symmetric groups Sky1 X Sip1 to the vertices. An element (g,h) €
Sk11 X Si11 acts on the vertices of Ay x Ay as (g, h) (;J) = (;i’f(;)

J

This action consists of affine maps defining bijections on Ag x A; and vert(Ay X Ay).
Actions and equivalence relations on simplices and triangulations are induced as
in Definition 20. As shown in Theorem 21, this equivalence relation satisfies the
last condition of reverse search structure for classes with symmetry, and we can
enumerate the classes of regular triangulations with respect to symmetry.

When k = [, there is further symmetry: commuting the first half of axes and the
last half. This can be formulated as an action of S x Si x S2. We can also consider
this action with some modifications on the arguments on complexity shown below.

The volume vectors can be regarded as matrices: (¢ (;’ ))” e RF x R
Sk+1 X Si+1 acts on a volume vector ¢ as rearrangements of Tows and columns of
a matrix. Two regular triangulations T and T’ are in the same class if and only if
their volume vectors ¢ and ¢ are in the same class, since the correspondence
between regular triangulations and volume vectors is one-to-one (cf. Theorem 9).

We introduced a total order on the regular triangulations by the lexicographic
order of their corresponding volume vectors (Definition 12). For the case of Ay x Ay,
we can regard this order as a lexicographic order on matrices: a matrix (a;;) is
smaller than (b;;) if for some (ig, jo), @iojo < bigjo, and for any (4, j) such that i < i
or such that ¢ = ig and 7 < Jo, aij = bz]

As the representative of a class of regular triangulations we took the maximum
one.

Lemma 24 Given a regular triangulation T, the time time(rep) to compute the
representative element of its equivalence class is O(I!' k%1?).

This is faster than the time complexity for the general case in Lemma 22.
Proposition 25 The enumeration algorithm for equivalence classes of reqular tri-
angulations in Theorem 21, works for the case of Ay x A;. The time complexity is
linear to the number of classes of regular triangulations, and the memory required
is several times the size of a triangulation.

6.3. Hypercubes

We are interested in enumerating the triangulations of hypercubes. We write e;
for unit vectors with the i-th element one and the rest zeros. The d-cube Cy (in
R?¢, different from the definition in section 3) is given by

€,
Cq = conv : E]Rz‘i:eil,...,eid€]I{2,i1,...,id€{1,2}

€,
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Our objects to enumerate are the triangulations of A = vert(Cy).
We define the symmetry of Cj; as follows.
Definition 26 We formulate the symmetry of Cq by an action of the direct product
of d+1 symmetric groups Sy X - -- X So X Sy to the vertices. An element (g1, ..., 9gq,
€ €91 (in(1))
h) € Sy x---xS3% Sy acts on vertices of Cq as (g1,---,9a, h) = :
€i, €g4(incay)
This action consists of affine maps defining bijections on Cy and vert(Cy). Ac-
tions and equivalence relations on simplices and triangulations are induced as in
Definition 20. As shown in Theorem 21, this equivalence relation satisfies the last
condition of reverse search structure for equivalence classes with symmetry, and
we can enumerate the equivalence classes of regular triangulations with respect to
symmetry.

Proposition 27 The enumeration algorithm for equivalence classes of reqular tri-
angulations in Theorem 21, works for the case of Cq. The time complexity is linear
to the number of classes of reqular triangulations, and the memory required is several
times the size of a triangulation.

7. Enumeration of Maximal Independent Sets of a Graph

In section 8, we show that triangulations can be regarded as a subclass of the max-
imal independent sets of some graph. Efficient algorithms to enumerate maximal
independent sets are known.3':32 We reformulate one of these algorithms for our
case.

Tsukiyama, Ide, Ariyoshi and Shirakawa proposed an algorithm to enumerate
maximal independent sets of a graph.32.This runs in time proportional to the num-
ber of maximal independent sets, but requires memory of the order of the size of the
graph. Lawler, Lenstra and Rinnooy Kan extended this algorithm for the enumera-
tion of maximal independent sets of independent set systems.?! The time complexity
is proportional to the number of maximal independent sets, with evaluation based
on the number of executions of independent tests. The algorithm requires memory
of the size of the base set, which is equal to the number of the vertices in the case of
a graph. For our case, the vertices of the graph correspond to all of the d-simplices,
which can become large.

We reformulate algorithm Ref. [31] to the graph case. Our algorithm does not
put the graph itself in the memory, but proceeds by testing whether two vertices
are connected by an edge. Also, we reduce the time complexity compared to just
applying Ref. [31] to graphs.

Let the base set be E = {1,...,n}, and M the set of maximal independent
sets. Let us denote by M the family of independent sets that are maximal within
{1,...,7}. In this algorithm, M; is computed using M;_;, starting from My =
{0}, to obtain M,, = M.

18



The update from M;_; to M, is done as follows. For each I in M;_q, the
independence of I U {j} is tested. If this is independent, I U {j} is added to M;. If
not independent, I and other maximal independent sets of M, included in T U {j}
become candidates to be added. If I' is such maximal independent set of M;
included in I U {j}, it should be maximal in I U {j}. This fact is used in reverse:
first the maximal independent sets in I U {j} are listed, and then their maximal
independence in Mj is checked. The algorithm elaborates to produce I' from a
single I. The computation can be regarded as a search on a tree. The tree is rooted
by the (), and nodes at level j correspond to members of M;. For each I in M;_q,
the corresponding I' (possibly several) in M; become its children. The maximal
independent sets, the leaves of the tree, are enumerated by depth first search.

Our formulation is for the enumeration of maximal independent sets of a simple
undirected graph. The base set E is the set of vertices of the graph. We suppose the
existence of an oracle which answers in unit time the previous or next vertex in the
adjacency list for a given vertex. This seems trivial when we write E = {1,...,n},
but it is not for our case, because the vertices correspond to the d-simplices S. The
existence of such an oracle is discussed in section 8.3.

Let m = maxjep #1 be the maximum cardinality of vertices in a maximal
independent set. We say that two vertices are intersecting if they are connected
by an edge, and denote by time(intersect) the time needed to judge whether two
vertices are intersecting or not.

Algorithm 28 (enumerating maximal independent sets of a graph)

Step 1. For each I in M;_1 we want to find all independent sets I' mazimal within
T'U{j}. For this, we only have to check the intersection of the newly added vertex
j with the no more than m current ones in I.

(1) If j does not intersect any vertex in I, IU{j} is the only mazimal independent
set in I U {j}. Furthermore, this is mazimal independent in {1,...,j}.

(2) If j intersects some of the vertices in I,

(a) I is a mazimal set in I U {j}. Furthermore, I is mazimal independent
in {1,...,j}.

(b) I' = {i € T U{j} : i does not intersect j} is the other mazimal inde-
pendent set of I U {j}. We check the mazimality of I' in {1,...,5} by

testing if some i € {1,...,5} \ I' does not intersect any vertez in I'. If
such i exists, I' is not maximal independent, and if not, it is mazimal
independent.

Step 2. We check whether I' is obtained from the lexicographically smallest I €
M;_1. This is always true for cases (1) and (2a). We only have to check for the
case (2b).

We have to check for each i < j, i ¢ I, the independence of (I' \ {j})U (I N
{1,...,4 — 1}) U {i}. Each of these independence tests can be done by checking
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whether i intersects some vertex in (I' \ {j}H) U(I N{1,...,i —1}). If i intersects
some vertez, (I' \ {7H U T N{L,...,i—1})U{i} is not independent. If i does not
intersect any of the vertices, this set is independent. For this latter case, I' can be
obtained from another lexicographically smaller I, and I' is rejected. If this does
not happen for any i < j, i ¢ I, I' is the child of I, and should be retained.

The time complexity is as follows.

In Step 1, for each I in M;_; the candidates I’ we take are one or two. The total
time complexity for this step is O(m-time(intersect)n#.M). For the extra time com-
plexity for the case (2a), each independence test can be done in m - time(intersect)
time, and it takes m - time(intersect)n time for each I'. The total time complexity
for this step is O(m - time(intersect)n?#.M).

In Step 2, the independence test can be done in time m - time(intersect). The
total time complexity for this step is O(m - time(intersect)n?#.M).

The time complexity analyzed above is the total time needed for descending the
search tree. Since we want to restrict the required memory size to 2m, we have to
recompute the parent when ascending the tree. However, this does not increase the
order of the time complexity.

Suppose we are at I' € M, and want to find its parent I € M;. If j+1 ¢ I', I'
is the case (2a), and I = I'. When j+1 € I, we try to add max(I'\{j+1})+1,...,j
in this order to obtain I. Recall that I was lexicographically the smallest among
the possible parents. If we have no element to add, I’ is the child for case (1) in
Step 1, and if we have, I' is the the case (2a).

The time complexity needed for a recomputation of I is m -time(intersect)n and
O(m - time(intersect)n?#.M) as a whole. Thus ascending the tree does not increase
the order of the time complexity.

Next, we discuss the space complexity.

To identify which node we are, the information of the current and previous
independent sets and the depth j is enough. This requires memory of size 2m We
do not need to store the path from the root to the current node.3! This is realized
as follows.

If we are descending the search tree, the next thing to do is to compute the
candidates I' and descend the tree. For case (1), we descend to the only candidate
I' =TU{j}. For case (2), let us descend first to the candidate I' = I. We try the
second candidate {i € I U {j} : not intersecting j}, if it is a child, when we come
back to this node ascending from I € M;.

Since we have the oracle mentioned above, we do not have to store all vertices.
Thus, we can traverse the search tree only with the information of our current and
previous independent sets and the depth j.

Theorem 29 Algorithm 28 enumerates all maximal independent sets of a simple
undirected graph. This works in time O(m-time(intersect)n?#.M) with memory size
2m. The graph has n vertices, with the maximum cardinality of independent sets
m, and time(intersect) is the time required to compute if two vertices are connected
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by and edge.

The computation of this enumeration can be divided into smaller problems, and
performed in parallel. This can be done by enumerating all nodes of depth not larger
than j, which are M}, the maximal independent sets of {1,...,j}, and performing
searches for each subtrees with roots I € M;.

8. Enumeration of Triangulations

We propose an algorithm to enumerate all triangulations, regular or not, for arbi-
trary configurations of points in general dimension. We formulate triangulations
as maximal independent sets of a graph, and apply the maximal independent set
enumeration algorithm proposed in section 7. The graph here is the graph with all
maximal dimensional simplices as the vertices and edges between those simplices
intersecting improperly. This algorithm works in time proportional to the number
of maximal independent sets. The memory required is twice the size of a maxi-
mal independent set. We also show an application of this algorithm to the case of
polytopes of the products of two simplices.

We first define the intersection graph (subsection 1), and enumerate triangula-
tions as maximal independent sets of this graph (subsection 2). We discuss further
two basic operations used in the enumeration: the enumeration of maximal dimen-
sional simplices (subsection 3) and testing whether two simplices are intersecting
improperly or not (subsection 4). We also show the enumeration for products of
two simplices in which some parts of the algorithm can be made faster (subsection
5).

8.1. Triangulations as Maximal Independent Sets

See section 3 for definitions of triangulations.
Definition 30 o (intersection graph) The intersection graph of S is the
graph with S the vertices and edges between two simplices intersecting im-
properly.

o 7={I €25: independent set of the intersection graph of S}
o M = {I € 2°: mazimal independent set of the intersection graph of S}

o T ={I€2%: triangulation of A}

Trivially, M is a subclass of Z. Let I be a triangulation. The d-simplices in
I must not intersect improperly, so I is an independent set. Furthermore, since
we cannot add anymore d-simplex to a triangulation without making improper
intersections, I is an maximal independent set. This gives the following proposition.
Proposition 31 7T is a subclass of M. An element I € M is in T if and only if
the sum of the volume of the d-simplices in I is equal to the volume of conv(A).

In the next section we enumerate the triangulations 7 by giving an algorithm
to enumerate the maximal independent sets M.
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The difference of 7 and M becomes a loss. This kind of thing happens, for
example, for the point configuration given as the vertices of Schénhardt’s polyhedron
(cf. 10.2.1 of Ref. [26], Ref. [33]). This polyhedron is a concave polyhedron made by
twisting a little bit a triangle of a prism. No tetrahedron with vertices among the
six vertices is included in this polyhedron. The set made by the three tetrahedra
fitting the outer concave part of this polyhedron becomes a maximal independent
set of the convex polytope of the six vertices. However, this is not a triangulation,
because the inner part is left. Whether this kind of thing happens or not depends
on the point configuration, though this dependence is not easy to detect.

8.2. Enumerating Triangulations

Now we apply the formulation above to the enumeration of triangulations. The
base set E is the set of d-simplices S. We suppose the existence of an oracle which
gives in unit time the previous or next simplex for a given simplex for some fixed
order of E. The existence of such oracle is discussed in subsection 8.3. The number
m = maxye pm #1 is the maximum cardinality of simplices in a maximal independent
set, and time(intersect) is the time needed to judge whether two simplices are
intersecting properly or not.

Theorem 32 (enumerating triangulations) By Algorithm 28, we can enumer-
ate all mazimal independent sets, thus the triangulations, of the intersection graph
of S. This works in O(m - time(intersect) (#S)2# M) time with memory size 2m.

The number of simplices in a triangulation is bounded by m. If m, the largest
cardinality of (maximal) independent sets, and the largest cardinality of a triangula-
tion is the same, the required memory becomes only twice the size of a triangulation.

8.3. Enumerating d-simplices

We suppose the existence of an oracle which gives in unit time the previous or
next d-simplex for a given d-simplex for some fixed order of the d-simplices S.

The given point configuration is A = {ai1,...,a,}. A set of d + 1 points
{ai,...,ai,,, } becomes the set of vertices for a d-simplex if and only if (%1),...,

( ;+1) are linearly independent.

Thus the problem reduces to the existence of a similar oracle for the bases of
{(%),...,(%)}. This can be realized by reverse search with the time complexity
O((d + 1)n#38) for the whole enumeration.!* For a given base, answering its next
or previous base can be done in time approximately O((d + 1)n).

Using this oracle, we do not need to store all of the d-simplices, but memory
for only several times the size of a simplex is enough. This enables handling of
large problems. For problems that even the memory for simplices matters, the
enumeration of all triangulations might require hopelessly enormous time. However,
since the algorithm does work, we can at least perform partial enumeration.

For smaller problems for which we can store all of the d-simplices, it is better
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to enumerate and store them. This is much faster than asking the oracle each
time. The enumeration here can be done by the reverse search as mentioned above.
Though in practice, trying all d+ 1 points among S and checking if it is a d-simplex
by calculating the determinant of the corresponding d + 1 vectors is fast enough.

8.4. Testing the Intersection of d-simplices

Computing whether two simplices are intersecting improperly or not is usually
the most time consuming calculation. The time complexity in Theorem 32 was
dominated by the number of this calculation. Here, we give algorithms and their
complexity for this calculation. (A matrix is regarded as a set of column vectors.)
Algorithm 33 (testing the intersection of d-simplices)

Input: {py,...,Pg1}, {a1,---,q4,1} - vertices of d-simplices in R?

Output: whether the simplices are intersecting improperly or not

Suppose {py,...,Pg1} N{q1, 8441} = 0. First, by affine transformation,
we move (qy---q4,1) to (0 e1---eq), where e; are the unit vectors. The points

(P1 - Pgy1) move to (@ — Gy - Qgy1 — q,)" (P, —aq, - Pyr1— 1) Let C de-
note this matriz. The convex hull of these points has a point common with the convex

hull conv{0 ,ei,...,eq} if and only if these simplices are intersecting improperly.
This is equivalent to whether inequalities
c 0
1---1 1
“1---—1 2 -1 |
-%.C -1
x>0,

where a solution C'x becomes a point in common mentioned above, have o feasible
solution or not. When {p,,...,pg,1} and {qy,...,q4,1} have points in common,
the testing reduces to smaller linear program, after neglecting by projection the di-
mensions spanned by the points in common.
Lemma 34 Algorithm 83 works in time LP(d+1,d+3), where LP(n,m) is the time
required to solve a linear programming problem with m constraints and n variables.
If it is possible to store if the simplices are intersecting properly or improperly for
all pairs of simplices, it is better to compute first all the intersections and store them.
This requires memory of (#28) bits. It can be done in time time(intersect) (#25)
Since this computation is just to test intersection for (¥°) pairs, it can obviously
be divided and computed in parallel. By this preprocessing we can remove the
factor time(intersect) of M from the time complexity in Theorem 32 to achieve

O(time(intersect) (#8)? + m(#S)2#M).

8.5. Products of Two Simplices

We are interested in enumerating the triangulations for products of two sim-
plices. The definition of this polytope was given in subsection 6.2.
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First we state several lemmas for later use. The volume of (k + I)-simplices in
a triangulation of Ay x A; is constant. Under scaling, they have volume 1/(k +1)!,
and the product has volume 1/k!l!. This leads to the following.

Lemma 35 No more than m = (k + )!I/k!l! (k + 1)-simplices are included in an
independent set of the intersection graph of Ax X A;. All triangulation consists of
m (k + 1)-simplices.

The (k+1)-simplices in Ay, x A; correspond to the spanning trees of the complete
bipartite graph Kjp41,+1 (7.3.D. of Ref. [2]). This proves the next lemma.
Lemma 36 The number of (k + 1)-simplices of Ay x Ay is (k + 1)1(1 + 1)%.

The generation of spanning trees of K141 can be done using a constant time
per tree with small memory.3*3® Thus we can generate the corresponding (k + 1)-
simplices similarly.

Lemma 37 (enumerating d-simplices: the Ay x A; case) We can generate the
(k +1)-simplices of A x A; using a constant time per simplex with small memory.
Thus, the oracle required for Algorithm 28 exists.

For the point configuration of Ay x A;, testing whether two simplices are in-
tersecting improperly or not can be reduced to judging the existence of a cycle in
a subgraph of a directed Kjy1,4+1 (Lemma 2.3. of Ref. [20]), which leads to the
time complexity. The intersection test for this Ag x A; case can be computed faster
using this graph property than by Algorithm 33.

Lemma 38 (testing the intersection of d-simplices: the Ay x A; case) Given
two (k + 1)-simplices in Ay, X Ay, judging whether they are intersecting improperly
or not can be done in time O(k +1).

We apply Theorem 32 to the case of Ay x A;.

Theorem 39 (enumerating triangulations for Ay x A;) For the point config-
uration A = vert(Ay x A;), Algorithm 28 enumerates all maximal independent sets
of the intersection graph of S, thus the triangulations, in O((k:l) (k+ DE2IZE#M)

time with memory size Q(kk'H).

Proof. By Lemma 37, the oracle exists. By Lemma 35, and m = (¥/*). By
Lemma 36, #S = (k + 1)!(I + 1)*. By Lemma 38, time(intersect) = O(k +1). O

8.6. Enumerating Dissections

By changing the intersection graph in Definition 30 to a graph with edges be-
tween d-simplices whose interior intersect, we can make Algorithm 28 enumerate
dissections instead of triangulations. A dissection of a point configuration uses d-
simplices with vertices among the given points as well, but instead of d-simplices
intersecting at their faces, only requires them not to share interior points. To the au-
thors knowledge, this is the only reasonable algorithm for enumerating dissections.
It was used in computing dissections in Refs. [36,37].
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