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Abstract. This paper considers the problem of computing a minimum
weight triangulation of n points in the plane, which has been intensively
studied in recent years in computational geometry. This paper inves-
tigates a branch-and-cut approach for minimum weight triangulations.
The problem can be formulated as finding a minimum-weight maximal
independent set of intersection graphs of edges. In combinatorial opti-
mization, there are known many cuts for the independent set problem,
and we further use a cut induced by geometric properties of triangu-
lations. Combining this branch-and-cut approach with the [-skeleton
method, the moderate-size problem could be solved efficiently in our
computational experiments. Polyhedral characterizations of the proposed
cut and applications of another old skeletal approach in mathematical
programming as the independent set problem are also touched upon.

1 Introduction

A triangulation of a planar point set S is a subdivision of the convex hull,
denoted by CH(.S), of S into triangles, and is a maximal straight line plane graph
whose vertices are the points of S. Triangulations have many applications in
computational geometry and related fields. What kind of triangulation is optimal
depends on applications. For instance, we do not want flat obtuse triangles for
finite element triangulation mesh. Many kinds of optimal triangulation have
thus been investigated [3, 8]. Optimization criteria for which efficient algorithms
are known include maximizing the minimum angle (Delaunay triangulation),
minimizing the maximum angle, minimizing the minimum angle maximizing the
minimum height, and minimizing the maximum edge length, etc.

The most longstanding open problem in computational geometry is the min-
imum weight triangulation (MWT in short), in which the criterion is the sum
of edge length. MWT is included in Garey and Johnson’s list of problem as nei-
ther known to be NP-complete, nor known to be solvable in polynomial time,
though for a point set which forms a convex polygon, dynamic programming can
compute the MWT in O(n?) time where n is the size of the point set.

The apparent difficulty of the problem suggests that approximation algo-
rithms should be considered. It was thought that the Delaunay triangulation
and the Greedy triangulation (GT in short) approximate the MWT well. Con-
struction and properties of these have been most studied of all (see references in
[3, 6, 7] and also [5, 15]). These approximate algorithms produce good triangula-



tions on the average, and also several theoretical analyses for these approximate
algorithms are performed (see [11]).

On the other hand, there have been demonstrated that a large subgraph,
called skeleton, contained in any minimum weight triangulation can be computed
in a polynomial time by making use of plane-geometric properties, and this works
quite well for points uniformly distributed in the square, etc., by combining it
with dynamic programming. See [6, 5, 7, 15]. In this approach, as far as the
number of connected components of the skeleton is bounded, the problem can
be solved in a polynomial time, but there exist cases such that this number is
not bounded by a constant. For such a case, a new approach would be necessary.

In this paper, we have adopted another approach based on the paradigm of
branch-and-cut in combinatorial optimization. This paradigm has been demon-
strated to be powerful enough to solve large-scale optimization problems such as
the traveling salesman problem (TSP) (e.g., see [1]). Study of solving TSP faster
is to find good cutting planes efficiently. In our implementation, we made use
of a skeleton [9, 4] which is always contained in MWT, and also many kinds of
cutting planes, especially convex polygon cuts making use of geometry. Though
with only cutting planes of ours, an MWT cannot be necessarily obtained, we
can find an MWT of point sets of over one hundred points without branching
and, even when cutting plane method can not construct MWT, a much less
number of backtrackings are needed than the branch-and-bound method.

Polyhedral characterizations of the proposed convex polygon cut and ap-
plications of another old skeletal approach via network flow in mathematical
programming as the independent set problem are also touched upon.

2 Problem formulation

The minimum weight triangulation problem can be viewed in various ways. This
paper regards finding a triangulation of a point set as finding a maximum inde-
pendent set of the intersection graph of the straight line complete graph of the
given point set. An edge in the original graph is a vertex in the corresponding
intersection graph and those vertices are connected if they cross each other in
the original graph.

For each edge e;, we assign a variable z;. z; is set to 1 when e; is used in the
triangulation, and 0 otherwise. Denote by ¢; the length of edge e;, and by M the
number of edges used in triangulation. An edge subset of the complete graph of
the n points such that no two edges intersect with each other and the number
of edges is M, a constant for any triangulation. Hence, the MWT problem is
formulated as follows.

min{ E Ci%;
i

In general, such Integer Program (IP) is not easy to solve and some devices are
needed to reduce computational time. Here we consider solving this problem by
branch-and-bound and branch-and-cut paradigms. In both methods, we utilize
Linear Program (LP) obtained by relaxing the condition z; € {0,1} into 0 <

z; € {0,1}, z;+x; <1 (¢,]s.t.e; and e; cross), in = M}
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z; < 1, called “relaxed problem” of IP or “relaxed MWT”. As for our branch-
and-bound results, see [10]. In this paper we concentrate on the branch-and-cut
paradigm.

2.1 Exploiting (-skeleton

There have been investigated intensively a subgraph which is always included
in the MWT. In this paper, we used the (-skeleton [4, 6] among them. The
LMT-skeleton [7, 5] has been demonstrated more powerful in most cases, and,
by using it, further improvement would be achieved. By using the (-skeleton,
we can fix variable z; of edge e; in the skeleton to 1, and further variable z; of
edge e; intersecting some edge in the subgraph to 0.

Figure 2 shows the ratio of the number of essential variables to the total
number of edges minus the number of boundary edges of the convex hull, for n
points uniformly distributed in the square. As is seen from this figure, the size
of the LP is reduced greatly by making use of this subgraph.

3 Branch-and-cut for MWT

The branch-and-cut algorithm solves Integer Programming (0-1 programming)
by means of Linear Programming as follows. First it solves the related LP of the
original IP. If the solution is integral, it is the solution of IP. If not, it appends to
the LP some cutting planes which is not satisfied by the current solution and is
guaranteed to be satisfied by the optimal integral solution. Then the algorithm
solves the LP again, and iterates this process until integral solution is obtained or
no cutting planes among prescribed types of candidate cuts violate the solution.
In the latter case, the algorithm branches into two cases. One of variables, which
are neither 0 nor 1 in the current solution, is set to 0 in one case, and to 1 in
the other case. For each case, the algorithm proceeds to solve an LP obtained



by fixing the value of the branching variable, and to append cutting planes as
before. Then the minimum value of the objective function with integral solution
is finally obtained.

In the problems such as TSP or MWT, each edge is assigned to one variable
and branching corresponds to adopting the edge and discarding the edge.

3.1 Cutting planes

In order to reduce the total computation time, we have to append cutting planes
with good properties and the number of them should be as small as possible.
Also we have to reduce the total number of cutting planes by omitting useless
cutting planes.

In this section, we first describe typical cutting planes for the independent
set problem, and then, by making use of the special structure of triangulations,
propose a new cut, called convex polygon cut.

Dominance condition In the intersection graph, to obtain a maximum inde-
pendent set of size M, for each vertex v; and a set dv; of its adjacent vertices
v;, one of v; and év; should be used, i.e.,

Dominance cut: z; + Z z; > 1.
v Edv;
There are O(n?) inequalities to be satisfied for a set of n points, and this number
is relatively smaller with those of other conditions. In some instance, addition of
dominance conditions made a great progress and this condition is indispensable
in other instances.

Clique condition In the intersection graph, only at most one of the nodes in
a clique can be chosen for an independent set. Hence, for a clique (complete
subgraph) S of vertices in the intersection graph, the following holds.

Clique cut : Z z; <1
z;,€C
Ideally, we may impose this clique condition for each maximal clique of the
intersection graph, or for every k-clique for some k. However, it takes too much
time to generate all maximal cliques. In our implementation, cliques of size 3
and 4 are used. Although there are many cliques in the intersection graph, we
have an example that clique cuts are not so effective by themselves in a sense
that even with these cuts the relaxed LP solution remains unchanged.

Odd-cycle condition For an odd cycle C' of 2k + 1 vertices (k > 1) in the
intersection graph, only at most k vertices out of C’ can be used in independent
sets, i.e.,
Odd-cycle cut : Z z; < k.
v, €C’
The 3-cycle condition is equivalent to 3-clique condition. It is experimentally ex-
perienced that omission of conditions for odd cycle of size more than 5 are rarely



violated by the solution of LP for MWT. In other words, we often encounter such
a point set that 5-cycle condition are very efficient.

Convex polygon condition The above cuts are well-known for the indepen-
dent set problem. Now we propose a new cut using the structure of planar
triangulations.

Theorem 1. We set P a point set that forms a convex polygon and set I the
points inside P. Also we set V.= P U I. For variables that correspond to edges
which is not on CH(V) and whose both endpoints are in V (we represent by
z; € V that edge e; is in the region CH(V')), m is the mazimal number of edges
in triangulation of V' minus |CH(V)|), the following inequality

Convex polygon cut : Z z; <m
z, €V
must be satisfied by the variables corresponding to minimum weight triangulation.

All the proofs are omitted in this version due to the space limitation.

Unsolvable cases Even with these cuts, there were cases whose MWT cannot
be found. Fig.3 depict that the basic cuts except convex polygon cuts are not
sufficient to produce an integral solution to the relaxed LP.

Further, even with convex polygon cuts, the same holds (see Fig.4). The point
set in Fig.4 is on an ellipse whose aspect ratio is %. Edges whose corresponding
variables are not 0 in an optimal solution of relaxed LP are drawn in Fig.4.
Denoting by x; ; the edge connecting point ¢ and point j, variables for edges on
the convex hull of the point set are set 1, and yet z; 4 = 255 = % and variable
for other diagonals are % We have not devised practical cutting planes to avoid

such situations.

From the viewpoint of polyhedral combinatorics, merits of convex polygon
cuts over the basic cuts, which will be theoretically shown in section 5. Here,
it should be noted that, even for 7-gon, the independent set polytope (see that
section) is nonintegral, while for 6-gon, it is integral, which cannot be achieved
by only the basic cuts.

Fig. 3. Edges avoiding clique and cycle
conditions Fig. 4. Unsolved situation



How to find useful cuts To find the condition violated by the solution, we
first construct intersection graph of the graph and divide it into connected com-
ponents. Node adjacent to no nodes is discarded. We have only to consider this
condition for the cycle in each component to reduce total calculation time. Be-
cause if a variable in some 5-cycle is 1, variables corresponding to the adjacent
two node are set 0. Sum of the remaining two variables are at most 1 and then
the sum of variables in the cycle is at most 2. Assumption of one of variables
corresponding to the node in cycle leads to the same conclusion.

However, enumeration of all the inequalities violated by the solution is not
necessarily a good solution to avoid needless inequalities. We shall show how to
do this in the later section.

3.2 Strategies in our branch-and-cut

Reducing the number of cutting planes is a key to reduce total time of calculation.
So far, we have devised the following two strategies.

(1) Now, we do not apply dominance condition or clique condition at first
and treat them as special cases of cycle condition and convex polygon condition.
In our first implementation of branch and cut, we first used all the dominance
conditions because the total number is not so large. Actually there are only
O(n?) cutting planes in comparison with O(n*) inequalities of crossing condi-
tion. However, each size of dominance condition is so long that total amount of
dominance condition is not negligible.

(2) We do not try to find all the odd cycle conditions, even 5-cycle condi-
tions. If the size of any connected component of rounded-up intersection graph
(intersection graph of edges whose variables are more than 0) is large, say 30,
there might be thousands of cutting planes unsatisfied by the solution of the
step. Even worse, some of the violated inequalities are weakly violated, like
z; +z; + 2 + 2, + T, = 2.01, and improvement for them does not give a big
improvement of the solution. In such cases, we had better try convex polygon
condition first. When the rounded-up intersection graph become sparse in the
connected component after applying the convex polygon ones, we can append
much smaller number of cycle conditions.

4 Experimental results

4.1 Implementation

Our experiments were done on SparcStation 20 with 128Mb RAM. Times are
all measured on this machine. As for a LP code, we have used an ftp-able code,
written in C, called “lp_solve” [2], which uses a simplex method. We have also
tested some interior-point codes for linear programming to our problem, and it
is observed that the interior-point codes solve the problem faster for large cases
in our preliminary experiments.

There are the following limitations of our implementation. For convenience
we have assumed that no three points are collinear. Furthermore, in the im-
plementation of this sort of search, arithmetic operation of high accuracy is



indispensable. However, most arithmetic operations are done by floating-point
computation and arithmetic errors such as rounding error or cancellations of
significant digits might be caused, though no fatal errors have occurred so far.

4.2 Computation time

In Fig.5, computational results for uniformly distributed points are given. For
100 points uniformly distributed in the square, our program could find an optimal
solution within from 30 minutes to 3 days depending on the number of branchings
for each instance. By incorporating that the subproblems are divided into much
smaller problems in practice and other possible improvements mentioned in this
paper, the speed of the current code will be greatly improved.

5 Geometric aspects of the cutting planes

We used several cutting planes to solve the MWT problem. Among those were
clique cuts, odd-cycle cuts and convex polygon cuts. In our approach, we char-
acterized triangulations as maximum independent sets of the intersection graph
of the edges. In this section, we consider the relation between these three types
of cuts and the polytope of the independent sets.

We were given n points S = {p;,...,p,} in the plane. Here, we denote an
edge connecting points p; and p; by e;;. Let E = {e;; : 1 < ¢ < j < n} be the
set of edges. The intersection graph of the edges was a graph having edges FE as
vertices, and pairs of vertices corresponding to pairs of intersecting edges in E
were connected by edges in this intersection graph.

Given an intersection graph, its independent set polytope Pi,q is the convex
hull of the incidence vectors of the independent sets of the intersection graph.
The maximal independent set polytope Pp,.x is the convex hull of the incidence
vectors of the maximal independent sets. Since these two are 0-1 polytopes,
incidence vectors of independent sets and maximal independent sets form exactly
the vertices of P q and Py ax. These two polytopes can be defined for any graph.

Our intersection graph was the intersection graph of edges of a point con-
figuration S in plane. Euler’s formula implies that any spanning triangulation
(i.e. a triangulation in which the points in S become the set of 0-dimensional
simplices) has a constant number of triangles and edges. So, all maximal inde-
pendent sets have the same cardinality, and they are maximum. Each maximum
independent set corresponds to a triangulation. We defined M to be the number
of edges in a triangulation. The inequality Ze“eE z;; < M is valid on Pipq, and
Ppan{z: EeijeE z;j = M} = Prax. S0 Pyax forms a face of the polytope Ping.

Let Pret = { : 0 < & <1, z; + zi < 1 (for e;; and ey intersecting)}.
This polytope can be defined for any graph. Each inequality is corresponding to
a 2-clique in the intersection graph. The lattice points in this polytope are the
incidences vectors of independents sets, or the vertices of Pnq. S0, Pind C Prel-

The relaxed MWT in subsection 2 is the point set P N {2 : Ze,-,-eE zij =
M}. The lattice points here are the incidence vectors of the maximum indepen-

dent sets, or the vertices of Ppyax. S0, Pmax C Pra N { : Ee,-]-EE zi; = M},
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Convex polygon cuts were cuts peculiar to edge intersection graph of point
configurations in the plane. So the properties in this section are only for this
case of intersection graphs.

Proposition 2. Suppose {p;,,...,pi,,} C S formed the vertices of a conver m-
gon. Let E,, = {e;;, € E:s—1t# 0,£1(modm)} be the diagonal edges of this
m-gon. Let F' be the convex hull of the incidence vectors of the independent sets
including a set of diagonal edges of a triangulation of this m-gon. F' forms a face
of the independent set polytope Ppq. Its inequality is ZeimeEm zi4, <m—3.
The face F becomes a facet if and only if no edge in E '\ E,, intersects all sets
of m — 3 non-intersecting edges in E,,.

Corollary 3. Let S = {p1,...,pn} be vertices of a conver n-gon. A face of the
convex k-gon as in the proposition above forms a facet if and only if the k points
are taken consecutively from the n-gon.

We have shown that convex polygon cuts correspond to faces or facets of the
independent set polytope Pi,q. Since Py ax Was a face of Pi,q, the inequalities of
the faces of Pq are valid for Py, 4.

As already mentioned, Py is the relaxation of Pingq and PrgN{x : Ee,’_’j cp Tij =
M} is the relaxation of Py ,x. We started from solving Linear Programming on
Pagn{x: - ~wmZ;; = M} and were looking for a minimum weight triangula-
tion wilich iis:ez;] \Effrte)]c of Pnix. g ¥ ¢

The inequalities of faces of P,,q were fully used as cutting planes. Lifting of
the non-facet faces of the above three types makes facets. Giving description to
facets of other kind would be interesting.



6 MWT as maximization and Nemhauser-Trotter test

Another formulation for the minimum weight triangulation as the maximization
problem, state as below, provides interesting insights to MW'T.

max {Z (U —¢i)z;

z; € {0,1}, z;+z; <1 (¢,j5s.t.e;ande; cross)}
K3
We use the value max(c;) + € for U so that all the coefficients in the object
function are positive. In MWT, the cardinality of the maximal independent set
is fixed, so that the condition ) . x; = M can be dispensed with for positive
costs. The problem then becomes a pure vertex packing problem and we can
solve its LP relaxation efficiently by using the minimum-cost-flow algorithm.

Nemhauser and Trotter [13] showed that the variables with integer values
in the relaxed LP problem of the original problem without cuts have the same
value in the original vertex packing problem. This property means that we may
gradually reduce the size of the problem by fixing the integer-valued variables,
as by skeletons. Unfortunately, most of the variables have the value 1/2 in large
cases, and we can solve only the small problems, say, at most 10 points, which
were observed through large-scale computational experiments.

One approach to increase the number of variables with integer values would
be to reduce the upper bound U, which results in negative coefficients for long
edges. Edelsbrunner and Tan [8] showed that a triangulation which minimize the
maximum edge length can be obtained in polynomial time. This means that the
lower bound U; for U in order to obtain a triangulation is available. Although
the triangulation obtained with reduced U (U; < U < max¢;) is not necessarily
the minimum weight triangulation, obviously we have the following:

Proposition 4. If we obtain a triangulation by using U (U; < U < maxc;), it
is the minimum weight triangulation using edges shorter than U.

It is open in what condition a triangulation obtained in this way is the
minimum weight one, or how close to the minimum weight. But this approach
may give a good, efficient and robust approximation. For example, in the example
in Fig.6 for which neither (3-skeleton nor LMT-skeleton work well, we obtain a
triangulation which is actually the minimum weighted by using the upper bound
U =2 X minc;.

7 Conclusion

We have presented a framework of applying the branch-and-cut paradigm to
this problem, and have demonstrated its potential power by introducing new
effective cuts, together with their theoretical analysis.

Triangulations in high dimensions are also of both theoretical and practi-
cal interest. Our branch-and-cut approach can be generalized by considering an
intersection graph of simplices. This reversely elucidates the usefulness of inves-
tigating an intersection graph of triangles beside the intersection graph of all line
segments in the planar case. Some of the authors have analyzed and making use
of the structure of such intersection graphs in connection with enumerating tri-



angulations [12, 14], and currently we are planning to computational investigate
triangulations, or tetrahedralization, of points in the three-dimensional space.
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