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Abstract

We give new examples of shellable but not extendably shellable two dimensional simplicial complexes. They
include minimal examples, which are smaller than those previously known. We also give examples of shellable
but not vertex decomposable two dimensional simplicial complexes. Among them are extendably shellable ones.
This shows that neither extendable shellability nor vertex decomposability implies the other. We found these
examples by enumerating shellable two dimensional simplicial complexes which are not pseudomanifolds. A
rather efficient algorithm for this enumeration is also given.

1 Introduction

A pure simplicial complex is shellable if there is a total order of facets according to which the facets can be pasted
incrementally in a nice way (see Section 2 for definitions). The notion of shellability was introduced by Bruggesser
& Mani [5], who showed the shellability of the boundary complexes of polytopes. Shellability is important both
in combinatorial and computational geometry, for example, it was essential for the proof of the upper bound of
the number of faces of polytopes [11], or has been used for efficient convex hull construction of polytopes [14].
Shellability has also been studied from algebra through the Stanley-Reisner ring of simplicial complexes [8] [15].

A pure simplicial complex is extendably shellable if any sequence of a subset of facets satisfying the condition
of being pasted nicely can be continued to a shelling. This means we can make a shelling by pasting facets one
by one in a greedy manner. Extendable shellability was defined by Danaraj & Klee [6], who showed that for
a 2-pseudomanifold, shellability, extendable shellability, and being a 2-ball or a 2-sphere are equivalent [7]. It
is also known that rank 3 (i.e. geometrically, 2-dimensional) matroids are extendably shellable [4]. However, a
3-pseudomanifold, or even the boundary complex of a 4-polytope can be shellable but not extendably shellable
[18]. Even in dimension two, if we consider simplicial complexes other than pseudomanifolds, shellable but not
extendably shellable examples exist [2, Exercise 7.37] [9, Section 5.3] [15]. Since, for a 1-simplicial complex, or a
graph, shellability, extendable shellability and connectivity are equivalent, dimension two is the smallest interesting
case to consider. (For more information on shellability, extendable shellability and other combinatorial topological
properties, see [3] [6] [16] [17] [18]).

The first topic of this paper is shellable but not extendably shellable 2-simplicial complexes (Section 3). First,
we give new examples of such kind. Among them are examples smaller than those in the literature, and we have
checked their minimality by enumeration:

Theorem A. The two 2-simplicial complexes V6F9-1, 2 with 6 vertices and 9 facets are shellable but not extendably
shellable (Ezample 2). There is no 2-simplicial complez with less than 6 vertices or less than 9 facets having this

property.

Next, we show operations to make larger shellable but not extendably shellable 2-simplicial complexes from
smaller ones, and show the relation among the examples with respect to these operations or set inclusion (Propo-
sitions 6, 10, Remark 7).



A pure simplicial complex is vertex decomposable if there is a total order of vertices according to which the
facets including the vertex can be nicely removed. This is another operation for breaking (or constructing) simpli-
cial complexes inductively. Vertex decomposability was first introduced by Billera & Provan [1] [13] in connection
with the Hirsch conjecture (see also [3]). Vertex decomposability implies shellability. If all boundary complexes of
polytopes were vertex decomposable, then this implied the Hirsch conjecture. However, polyhedra whose boundary
complexes are not vertex decomposable (but shellable) have been found [10] [13]. Shellable but not vertex decom-
posable simplicial complexes begin to exist from 2-simplicial complexes which are not pseudomanifolds [9, Section
5.3] [15].

The second topic of this paper is shellable but not vertex decomposable 2-simplial complexes (Section 4). First,
we give new examples of such kind. They have the same size as the smallest example in the literature, and we have
checked their minimality by enumeration:

Theorem B. The three 2-simplicial complexes V6F10-1, 6,7 with 6 vertices and 10 facets are shellable but not
vertex decomposable (Ezample 11). There is no 2-simplicial complex with less than 6 vertices or with 6 vertices
and less than 10 facets having this property. Furthermore, V6F10-1 is not extendably shellable, but V6F10-6,7 are
extendably shellable.

Vertex decomposable but not extendably shellable simplicial complexes have been known (V6F11-3 [2, Exercise
7.37], for example). However, our extendably shellable but not vertex decomposable examples are new. From these
examples, we know that these two properties stronger than shellability do not have logical implications each other:

Corollary C. Neither extendable shellability nor vertex decomposability implies the other (Corollary 12).

The examples in this paper were generated using a computer. In the final part (Section 5), we propose a rather
efficient algorithm to enumerate shellable 2-simplicial complexes which are not pseudomanifolds (Algorithm 16,
Theorem 17). It generates one example per each class consisting of those identical with respect to the relabeling
of vertices.

The study in this paper is an expansion of [12].

2 Definitions and basic properties

Let V = {1,...,n} be a finite set. An (abstract) simplicial complez is a set A consisiting of subsets of V such
that if 0 € A, 7 C o then 7 € A. An element of A is a face. A facet is a face maximal with respect to set
inclusion. An element of V' is a vertez. The dimension of a face o is dimo = |o| — 1. The dimension of a simplicial
complex A is max,ca dimo. A simplicial complex is pure if all facets have the same dimension. A ridge of a pure
simplicial complex is a face having dimension dim A — 1. A pure simplicial complex is a pseudomanifold if any
ridge is included in at most two facets. If not, it is a nonpseudomanifold. A boundary ridge is a ridge contained in
only one facet, and a facet containing a boundary ridge is a boundary facet. A d-dimensional simplicial complex,
pseudomanifold, etc. will be denoted d-simplicial complex, d-pseudomanifold, etc. Two simplicial complexes which
become identical by relabeling the vertices are called isomorphic, and are regarded as the same.

A paritial shelling of a pure d-simplicial complex A is a sequence F1,..., F; of a subset of facets satisfying
i—1
F;n U F; | isa pure (d — 1)-simplicial complex (1 <1 <¥), (¥)
=1

where @ = {7 € A : 7 C 6}. A shelling is a partial shelling consisting of all of the facets of A. A pure simplicial
complex is shellable if it has a shelling. A partial shelling is extendable if there exists a shelling beginning from
it. A maximal not extendable partial shelling is called stuck. A simplicial complex is extendably shellable if any
partial shelling is extendable. In other words, extendable shellability means that we can find a shelling by adding
facets in a greedy manner.

The link of a face ¢ € A is linka(o) = {r € A:oUT € Ao N7 = 0}. The deletion of a face 0 € A is
dela (o) = {r € A: N7 =0} A pure simplicial complex A is vertez decomposable if it has only one facet, or if it
has a vertex ¢ with both linka ({i}) and dela ({¢}) vertex decomposable. A vertex decomposable simplicial complex
is shellable.

We are interested in the case of dimension two. When a 2-simplicial complex has a 2-dimensional ball (resp.
2-dimensional sphere) as its realization, we simply call it a 2-ball (resp. 2-sphere). For the top dimensional element



hs of the h-vector (or the reduced Euler characteristic), we have
hs = #facets — #ridges (or edges) + #vertices — 1

(see, for example, [17, Chapter 8]).
For a 1-simplicial complex, shellability, extendable shellability, vertex decomposability, and connectivity are
equivalent. This kind of simple situation holds until the case of 2-pseudomanifolds:

Theorem 1 ([7]). For a 2-pseudomanifold, shellability, extendable shellability, vertex decomposability, and being
a 2-ball or a 2-sphere are equivalent.

3 Shellable but not extendably shellable simplicial complexes

3.1 Examples

We first give shellable but not extendably shellable 2-simplicial complexes found using the enumeration technique
in Section 5. They include two known examples. Another larger known example V7F13 and two smaller examples
V7F12,V7F11 made reversing the operation in Proposition 6 are also listed.

Example 2. The following is a list of shellable but not extendably shellable 2-simplicial complexes. The list covers
all such examples with less than 6 vertices, 6 vertices and at most 10 facets, or less than 9 facets. (Such ezamples
do not exist for less than 6 vertices or less than 9 facets.) For the labeling, for example, V6F9-1 indicates the 1st
example with 6 vertices and 9 facets. The 2-simplicial complezes are given as lists of facets, and boundary facets
are printed in bold font. After the facets, are given the boundary ridges and stuck partial shellings (unsorted, as
sets).

V6F9-1 124,126,134, 135, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {124,126,134,135}

V6F9-2 123,126,135, 234, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {123,126,135,234}

V6F10-1 [15] 123,124, 126, 134, 135, 245, 256, 346, 356, 456

boundary ridges : 15, 16,23

stuck partial shelling : {123,124,126,134,135}

V6F10-2 124,126, 134, 135, 236, 245, 256, 346, 356, 456

boundary ridges : 15, 16,23

stuck partial shelling : {124,126,134,135}

V6F10-3 123,126,134, 135, 234, 245, 256, 346, 356, 456

boundary ridges : 14,15, 16

stuck partial shelling : {123,126, 134,135,234}

V6F10-4 123,126, 135, 146, 234, 245, 256, 346, 356, 456

boundary ridges : 14,15,

stuck partial shellings : {123,126,135,234},
{123,126,135,146}

V6F10-5 124,126, 134, 135, 234, 245, 256, 346, 356, 456

boundary ridges : 15, 16,23

stuck partial shelling : {124,126, 134, 135,234}

V6F11-1 124,126,134,135, 235, 236, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {124,126,134,135}

V6F11-2 123,124, 126, 134, 135, 234, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {123,124,126, 134,135,234}

V6F11-3 [2, Exercise 7.37] | 123,126,135, 145, 146, 234, 245, 256, 346, 356, 456

boundary ridges : ()

stuck partial shelling : {123,126,135,234}




V71l @ =125,b=126,c = 127,e — 145, f = 167,
h =235,i = 236,57 = 247,k = 356,1 = 457,
m = 567

boundary ridges : 14,24

stuck partial shelling : {e, j,k,l,m}

V7F12 a=125,b=126,c = 127,e = 145, f = 167,
g =234, h =235,1 = 236,75 = 247,k = 356,] = 457,
m = 567

boundary ridges : 14, 34
stuck partial shellings : {e, g,1,j,1},{e,g,3,l,m},

{e’j7 k’ l’ m}
V7F13 [9, Section 5.3] a=125,b=126,c = 127,d = 134,e = 145, f = 167,
g =234,h = 235,1 = 236,57 = 247,k = 356, = 457,
m = 567

boundary ridge : 13

stuck partial shellings : {a,b,d, e, 1}, {a,d,e,l,m},
{e7ja ka l7 m}? {0’7 ba cC, da €, f}? {da €9, iaj? l}a
{d7e’g7j7 l’ m}’ {d’g7 h7i’j’ k}? {d797 h7i7k7 m}

Checking that these examples are shellable but not extendably shellable was also done using a computer.
However, for examples V6F9-1,2, V6F10-1,3,4,5, V7F11, V7F12 or V7F13, Lemma 3 below gives a proof of not
being extendably shellable. This observation can be found, for example, in [16, Section IIL.2].

Lemma 3. Let A be a shellable 2-simplicial complex with hg = 0. Then, the final facet in any of its shelling is a
boundary facet. If there exists a proper partial shelling including all of the boundary facets, it does not extend to a
shelling of A, and A is not extendably shellable.

As can be observed from the examples, stuck partial shellings not including all of the boundary facets also exist.

Remark 4. Topological drawings of V6F9-1, 2 are shown below. The boundary ridges are drawn in bold lines. The
two examples differ only in the way the quadrilateral 1243 is triangulated. In V6F9-1 it is triangulated 124,134,
whereas in V6F9-2 it is triangulated 123,234.
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Y

Remark 5. All ezamples except V6F11-3 in Example 2 can be realized as polyhedral complexes without self inter-
section in three dimensional space. However, V6F11-3 cannot, because it includes the two dimensional projective
space as a subcomplez.

3.2 Relations

The following proposition gives a way to enlarge a shellable but not extendably shellable example, keeping a stuck
partial shelling.

Proposition 6. Let A be a shellable but not extendably shellable pure d-simplicial complex with Fy,..., F; a stuck
partial shelling. Take o ¢ A, dimo = d with @ N A being a pure (d — 1)-simplicial complex.

(1) Ifen (Uézl E) is not a pure (d — 1)-simplicial complex, then AUT is shellable but not extendably shellable
with F,..., F; o stuck partial shelling.



ii) Ife N ?: F:) is a pure (d — 1)-simplicial complez and (& i-: F;)) NA =0 (which is equivalent for
j=1"1J j=1+7J
the T satisfying (E\ (L_Jj.:1 F])) ={n:7CnCo} being T &A), then AUT is shellable but not extendably
shellable with F1, ..., F;,0 a stuck partial shelling.

Remark 7. The operations in Proposition 6 defines relations between shellable but not extendably shellable exam-
ples. The ten examples V6F9-1,2, V6F10-1,...,5,V6F11-1,...,3 are related by these operations as in the figure
below.

V6F10- 1
('Si non)

(ii) 234
234

(i) 123
23

(i) 236

V6F9- 1 V6F10- 2" VBF11- 1

(i)o
—
(i) 123

V6F10-5 12

(ii) 234
2 V6F11-2
(i)o
(ii) 124
24

@) 134 V6F10- 31
V6F9- 2 < -
(i) 146 f
V6F10- 4
Remark 8. If the vetrices of o belong to A, and A includes all of the d-subsets (i.e. possible ridges) or one less

than that, we do not have to check the condition “G N A being a pure (d — 1)-simplicial complez” in Proposition 6.
This is the case for the operations among examples V6F9-1, 2, V6F10-1,...,5,V6F11-1,...,3 in Remark 7.

V6F11- 3
(Bj orner)

Another relation between the examples to consider is the set inclusion. We show some properties of minimal
examples with respect to this relation.

A homology facet in a shelling is a facet with any of its proper subface included in some preceding facet in the
shelling. If ¢ is a homology facet in some shelling of a simplicial complex A, by simply removing ¢, a shelling of
A\ {o} can be made. In a shelling of a 2-simplicial complex, each homology facet contributes one to hg.

Lemma 9. Among the shellable but not extendably shellable 2-simplicial complexes, let A be a minimal one with
respect to set inclusion. Then any proper partial shelling of A is extendably shellable. Thus any stuck partial
shelling is extendably shellable. Furthermore, stuck partial shellings do not contain 2-spheres as subcomplezes.

Proof. The claims for extendable shellability are clear by the minimality of A.

Suppose there was a stuck partial shelling with S the set of its facets including a 2-sphere T' as a subcomplex.

Take a shelling of the whole simplicial complex A and let o be the last facet in 7. The facet o is a homology
facet of A with respect to this shelling. Thus A \ {¢} is shellable.

Next, we show there is a shelling of the stuck partial shelling S with ¢ a homology facet. Then the simplicial
complex with S\ {o} the facets becomes shellable. Since T is a 2-sphere, by Theorem 1, it has a shelling beginning
from o. By taking the reverse order, we can make a shelling of T ending with o, and ¢ becomes a homology facet.
Since S is extendably shellable as remarked above, this shelling of 7' can extend to a shelling of S, and ¢ is a
homology facet also in this extended shelling.

Now, S\{o} is a stuck partial shelling in A\{c}, thus A\ {o} is not extendably shellable. (A remark redundant
to this proof: adding o to A\ {o} is a valid operation in Proposition 6.) This contradicts the minimality of A. [

Proposition 10. Among the shellable but not extendably shellable 2-simplicial complexes, let A be a minimal one
with respect to set inclusion. Then A does not contain 2-spheres as subcomplezes.

Proof. Suppose A included a 2-sphere T as a subcomplex. Since stuck partial shellings do not contain 2-spheres
(Lemma 9), T is not included in any of the stuck partial shellings. Hence a shelling of T' can be extended to a
shelling of the whole simplicial complex A.

Take a stuck partial shelling S of A. Since S does not contain a 2-sphere, there should exist a 2-simplex
ceT\S.

Similar as in the proof of Lemma 9, T has a shelling ending with o, with ¢ a homology facet. As remarked
above, we can extend this shelling of T to a shelling of the whole simplicial complex A, and ¢ is still a homology



facet. Thus A\ {o} is shellable. The stuck partial shelling S of A is a stuck partial shelling of A\ {c}, thus
A\ {o} is not extendably shellable. (A remark redundant to this proof: adding o to A\ {¢} is a valid operation
in Proposition 6.) This contradicts the minimality of A. O

Remark that V6F9-1,2,V7F11 are minimal with respect to set inclusion. Other interesting questions to consider
might be (1) if minimal examples have hg = 0 (i.e. do not contain “homology 2-spheres”), (2) if minimal examples
have the least number of facets for fixed number of vertices, or (3) if stuck partial shellings of such examples contain
all of the boundary facets. Dealing with the relations by the operations in Proposition 6 is another interseting
subject.

4 Shellable but not vertex decomposable simplicial complexes

We first give shellable but not vertex decomposable 2-simplicial complexes found using the enumeration technique
in Section 5. They include one known example. Another larger known example V7F13 is also listed.

Example 11. The following is a list of shellable but not vertex decomposable 2-simplicial complexes. The list
covers all such examples with less than 6 wvertices, 6 vertices and at most 10 facets, or less than 9 facets. (Such
examples do not ezist for less than 6 vertices or less than 9 facets.) The 2-simplicial complezes are given as lists
of facets, and boundary facets are printed in bold font. After the facets, are given the boundary ridges. Eramples
V6F10-6, 7 are not vertex decomposable but extendably shellable.

V6F10-1 [15] see Ezample 2

V6F10-6 123,124, 125, 134, 136, 245, 256, 346, 356, 456
boundary ridges : 15,16, 23, 26, 35

V6F10-7 123,125,126, 134, 145, 234, 256, 346, 356, 456
boundary ridges : 16,24, 35

V7F13 [9, Section 5.3] | see Ezample 2

Checking that these examples are shellable but not vertex decomposable was also done using a computer.

Extendable shellability and vertex decomposability are both properties stronger than shellability. Vertex de-
composable but not extendably shellable simplicial complexes have been known (V6F11-3 [2, Exercise 7.37], for
example). On the other hand, examples V6F10-6,7 show the existence of extendably shellable but not vertex
decomposable ones. Thus we know there are no implication between these two properties.

Corollary 12. Neither extendable shellability nor vertex decomposability implies the other.

Remark 13. A topological drawing of V6F10-6 is shown below. Boundary ridges are drawn in bold lines.

1 1

V6F10- 6

Remark 14. All ezamples in Ezample 11 can be realized as polyhedral complexes without self intersection in three
dimensional space.



5 Enumeration of shellable nonpseudomanifolds

We call the 2-simplicial complex with five vertices 1,...,5 and three facets 123, 124, 125 the initial simplicial
complex, and denote it by Ajpnitiar- This is the minimal 2-nonpseudomanifold. For a 2-simplicial complex, we also
call a subcomplex isomorphic to Ajpnitia an initial simplicial complez.

Proposition 15. For any shellable 2-nonpseudomanifold A, there exists a shelling beginning from one of its initial
simplicial complezes.

Proof. Omitted for this version.
O

Algorithm 16. Begin from Ajpniia1- Add facets one by one in a shelling manner (i.e. satisfying (x) in Section 2).
The shellable nonpseudomanifolds with v vertices and f facets are made from those with v or v — 1 vertices and
f —1 facets.

Theorem 17. Algorithm 16 enumerates shellable 2-simplicial complexzes which are not pseudomanifolds.
Proof. Proposition 15. ]

During the enumeration, for each size of vertices and facets, we only want to output one simplicial complex
among the isomorphic ones. This can be done using the following lemma.

Lemma 18. We can find a canonical labeling with respect to isomorphism of a 2-simplicial complez with v vertices
and f facets in O(vvf) time.

Proof. Consider the vertex facet incidence matrix. Make all copies for the v! different vertex labelings. Remark
that v < f for the examples we are interested in. Use radix sort. O

Finally, the numbers of isomorphism classes of shellable nonpseudomanifolds we enumerated are shown in Table

3.

# of # of facets

vertices [ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
5 1 1 3 4 4 2 1 1
6 2 8 23 51 100 170 254 269 233 157 93 43 21 7 3 1 1
7 8 42 167 535 1628
8 27 217 1114
9 109 1106

10 447

Table 3: The number of isomorphism classes of shellable two dimensional nonpseudomanifolds with specified
numbers of vertices and facets.
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