Enumerating Triangulations
for Products of Two Simplices and
for Arbitrary Configurations of Points

Fumihiko Takeuchi and Hiroshi Imai

Department of Information Science, University of Tokyo, Tokyo, Japan 113

Abstract. We propose algorithms to enumerate
(1) classes of regular triangulations in respect of symmetry for products
of two simplices and
(2) all triangulations, regular or not, for arbitrary configurations of points.
There are many results for triangulations in two dimension, but little is
known for higher dimensions. Both objects we enumerate in this paper
are for general dimensions.
Products of two simplices, our first object, are polytopes rather sim-
ple, but their triangulations are not yet well understood. Since these
polytopes are highly symmetric, counting all triangulations naively is in-
efficient: we may count the “same” triangulation many times. Our first
algorithm enumerates the classes of regular triangulations, a subset of
triangulations, with respect to the symmetry. We use reverse search tech-
nique, utilizing the symmetric structure of the polytope. This enables
time complexity linear to the number of these classes, and space com-
plexity of the size of several triangulations.
Even for the polytope of this product, a nonregular triangulation was
found. Though algorithms to enumerate regular triangulations are stud-
ied well, no efficient algorithm to enumerate all triangulations, including
nonregular ones, has been known. Our second algorithm handles this
problem for arbitrary configurations of points. It formulates triangula-
tions as maximal independent sets of the intersection graph, and applies
a general maximal independent set enumeration algorithm. The intersec-
tion graph here is the graph with all maximal dimensional simplices the
vertices and edges between those intersecting improperly. This algorithm
works in time proportional to the number of maximal independent sets.
We last apply this second algorithm to the polytope of the product.

1 Introduction

Gel’fand, Kapranov and Zelevinsky introduced the secondary polytope for point
configurations in general dimensional space, and showed that its vertices corre-
spond to regular triangulations [7], [8]. Using this property, regular triangulations
can be enumerated by enumerating the vertices of that polytope. Billera, Filli-
man and Sturmfels studied the structure of this secondary polytope with relation
to volume vectors, and analyzed the complexity computing the polytope. They
also proposed the universal polytope, in which the vertices correspond to all



triangulations, but it has not resulted in a practical triangulation enumeration
method [3].

Regular triangulations of the product of two simplices Ay x A;, where k
and [ are their dimensions, have relations with other branches of mathematics,
such as Grobner bases [17], [18]. This polytope is highly symmetric: it has the
symmetry of the direct product of two symmetric groups Sg4+1 X Si41. So, it is
not smart to count all triangulations naively, because we may count the “same”
one (k + 1)!(l + 1)! times. De Loera devised a program to enumerate regular
triangulations for given sets of points. The program can take this symmetry into
account, and he enumerated the triangulations, all of which are regular, for the
case of Ay x Az and Ay x Ay [4], [5]. When the dimensions become larger, even
the number of classes divided by symmetry becomes huge. De Loera is using
breadth first search in his program, so all visited triangulations should be kept
in the memory, and the memory constraint becomes serious in larger cases.

Masada, Imai and Imai proposed an algorithm to enumerate regular triangu-
lations with output-size sensitive time complexity, which is same as de Loera’s,
using the memory only of the size for two triangulations [13], [14]. It uses a
general technique for enumeration which is called reverse search, by Avis and

Fukuda [1], [2].

Our first algorithm enumerates efficiently the classes with respect to sym-
metry of regular triangulations for the products of two simplices. Since this
polytope is highly symmetric, as mentioned above, it is important to enumer-
ate the classes. According to reverse search, we imaginary make a tree with the
classes the vertices, and enumerate those vertices traversing the tree only using
local information. The algorithm runs in output-sensitive time, i.e. in time pro-
portional to the number of classes, and requires memory only of the size linear
to a triangulation.

De Loera found a nonregular triangulation in A3 x Ajz. So, it is important also
to enumerate all triangulations, regular or not. Though there are some results [6],
there is no efficient algorithm to enumerate all triangulations in dimension higher
than two. Our second algorithm enumerates them for arbitrary configurations
of points. We characterize triangulations as a subclass of maximal independent
sets of the intersection graph of the maximal dimensional simplices, and apply
a general maximal independent set enumeration algorithm. The time complex-
ity is proportional to the number of maximal independent sets, the objects we
really enumerate. When triangulations form a proper subset of the maximal
independent sets, the gap between them becomes a loss. If this gap is small,
this algorithm is efficient, the first efficient one, to enumerate all triangulations.
The existence of this gap is determined geometrically by the configuration of
points. In two dimension this does not happen, and in three dimension, we have
Schénhardt’s polyhedron (cf. [15, 10.2.1]) for example. However we are thinking
that the gap may be small even in higher dimension. The memory required in this
second algorithm is only about the size of two triangulations. Finally, we apply
this to the case of the product of two simplices. The number of the simplices,
the vertices of the intersection graph, increases exponential to the dimension,



but we cope with this by using their correspondence with spanning trees of an
bipartite graph, and memorizing one simplex, or spanning tree, at once.

We begin by brief explanations of the concepts we use: regular triangulations
and secondary polytopes (Section 2) and reverse search (Section 3). Next we
derive some properties of products of two simplices (Section 4). Then we present
our first result: enumeration of their regular triangulations (Section 5). We pre-
pare some notations for enumerating all triangulations (Section 6). Finally we
enumerate them as maximal independent sets (Section 7).

2 Regular triangulations and the secondary polytope

Regular triangulations form a subset of triangulations. They correspond to the
vertices of a polytope, secondary polytope, which is determined uniquely by a
configuration of points. Thanks to this property we can enumerate all regular
triangulations applying a vertex enumeration method to the secondary polytope.
Please refer to [3], [7], [8], [12] and [20] for discussions in detail.

Let A={ay,...,a,} C IR*~! be a configuration of points, their convex hull

Q = conv(A), with dim(Q) = k — 1.

Definition 2.1 (triangulation) A simplicial complex T is a triangulation of
(@, A) if its skelton |T'| = UT equals Q and its points are among .A.

Definition 2.2 (regular triangulation) A triangulation T of (Q,.A) is reg-
ular if there exists a vector ¥ : A — IR having the following property. For
P = conv{(ay,¥1),-..,(an,¥n)}, and 7 the projection 7w : R* — IRF~! with

™ ( a:) =z, T = {n(F) : F is alower face of P}. Here F being a lower face

Tp
means, F'={x € P:cx =cy}, cx < ¢y valid for P, c441 < 0.

Definition 2.3 (volume vector) Let T be a triangulation of (Q, A). The vol-
ume vector for T is a vector pr : A — R with pr(w) = 3, crevert(o) VOl(9),
where vol is the dim(Q)-dimensional volume function, and vert(o) is the set of
vertices of 0.

Definition 2.4 (secondary polytope) The secondary polytope X(A) of a
. . . . . A .
point configuration A is the convex hull of points ¢7 in IR™ for all triangu-

lations T of (@, A).

Now we state that regular triangulations correspond to the vertices of the
secondary polytope X (.A). The nonregular ones are mapped to the points other
than the vertices, and their injectivity is not necessarily guaranteed. The vertices
connected by an edge in the secondary polytope are “similar”. Indeed, they can
be modified each other by “flips”. For the definition of flips, please consult the
references above.

Theorem 2.5 ([7, Chapter 7. Theorem 1.7., Theorem 2.10.]) The secon-
dary polytope X(.A) has dimension n — k, and its vertices correspond one-to-one



to the points pr of regular triangulations of (@, .A). The edges are between ver-
tices whose corresponding regular triangulations can be transformed each other
by a flip.

3 Reverse search

Reverse search is a general technique for enumeration. It performs at the same
output-size sensitive time as breadth first search (BFS) or depth first search
(DFS), but requires memory only for twice the size of an object among those
we want to enumerate. BF'S and DFS needed output-size sensitive memory to
memorize all reached vertices. To save memory, in addition to the adjacency
relation, which is necessary for BFS and DF'S, parent-children relation is needful
for reverse search [1], [2].

First we state the adjacency and parent-children relation for reverse search.
This structure for reverse search is named “local search structure given by an
A-oracle.” We call it a structure for reverse search here.

Definition 3.1 (S,6,Adj, f) is a local search given by an A-oracle if it suffices
the followings. (1) S is a finite set. (2) 6 € IN. (3) Adj : S x {1,...,6} —
S U {0}. For any a € S and 4,5 € {1,...,6}, (i) Adj(a,?) # a and (ii) if
Adj(a,?) = Adj(a,j) # 0 then i = j. (4) f : S — S is the parent function:
f(a) = a or Adj(a,?) for some i. (5) There exists a unique root vertex r € S: a
vertex such that f(r) = r. For any other vertex a # r, there exists n € IN such

that f(M(a) =r.

S is the set to enumerate. The maximum degree of the adjacency graph is 6.
For each vertex a € S the adjacency function Adj returns its indexed adjacent
vertex, or sometimes { if the vertex has degree less than 6. This index is for use
in the enumeration algorithm. We always assume that the adjacency relation is
symmetric: if Adj(a,:) = b then Adj(b,j) = a for some j. An example of this
reverse search structure is shown in Fig.1. The information of §, Adj, f and r is
given to the reverse search algorithm, and the algorithm returns S as its output.
Actually we do not need r, because we can find it by applying f several times
to a vertex. The algorithm is presented in Fig.2.

Theorem 3.2 ([2, Corollary 2.3.]) The algorithm in Fig.2 works for the struc-
ture in Definition 3.1. The time complexity is O(é (time(Adj) + time(f)) #5),

where time(Adj) and time(f) are the time necessary to compute functions Adj

and f. The memory required is the size of two objects in S.

4 Ap X A; and its symmetry

The standard d-simplex A, is the convex hull conv{e;,...,eqsq1} in R, We
use e; or f. for unit vectors whose ¢-th or j-th element is one and the rest zeros.
The product of two standard simplices A X 4; is

€;

AkxAlzconv{( ) eRFIHT2 e {1, k+1},5€{1,... 1 +1}})

J



In Fig.3 we show A; x Ay and Ay X A, for example.

Following the notation in section 2, our objects are the triangulations of
(A x Ay, vert(Ag x 4;)), where vert(Ag x A;) are the vertices. Examples of
triangulations are shown in Fig.4.

First we state three lemmas for later use. The fact that the volume of (k+1)-
simplices in a triangulation of Ay x A; is constant leads the following.

Lemma 4.1 The number of (k+1[)-simplices included in a triangulation of Ay x
Apis (k+1)!/ENL

The (k + I)-simplices in (A X A, vert(Ag X 4;)) correspond to spanning trees
of the complete bipartite graph Ky 41 [7, 7.3.D.]. This derives the next.

Lemma 4.2 The number of (k + l)-simplices of (A x A;, vert(Ar x 4;)) is
(k+ )Y+ 1)k

The problem in the lemma below can be reduced to judging the existence of a
cycle in a subgraph of a directed Ky 41,41 [5, Lemma 2.3.], so the time complexity
follows.

Lemma 4.3 Given two maximal dimensional simplices in Ay X A;, judging
whether their intersection is a face of both of them or not can be done in O(k+1)
time.

The product A X A; has a symmetric structure: even if we commute the
axes of each simplex, the shape of the product does not change. We formulate
this symmetry.

Definition 4.4 (equivalence on simplices and triangulations) Let Sy X
S;41 be the direct product of symmetric groups, and (p,q) € Sg+1 X Siy1-

— Sk41 X Siy1 acts on the vertices of A x A;: (p,q) (;) = (e"”) )
J a(j)

— The action of Sg11 X S;41 on the simplices of (Ay x Ay, vert(A; x 4;)) is in-
duced by the action on the vertices: (p,q) conv{v,...,v,} = conv{(p, ¢)v,
L) (p) q)vm}

— The action of Sgy1 X S;41 on the triangulations of (Ag X Ay, vert(Ag X 4;))
is induced by the action on the simplices: (p,¢)T = {(p,q)o : 0 € T'}.

— The action of Si4; X Si4+1 on the vertices, simplices or triangulations defines
an equivalence relation on each of them: two elements are equivalent if they
can move to each other by an element of Si41 X Si41. We classify these sets
by orbits, the equivalence classes.

For example, the triangulations 77 and 75 in Fig.4 moves to each other by
((1,2),€e) € S3xS3. So does T3 and Ty by ((1,3),e) € S3XSa. The volume vectors

can be regarded as matrices: (o1 (?))ij € RF*! x R™!. Those corresponding
J

to the triangulations in Fig.4 are

22 13

12 21
<PT1=(21> <PT2=(12) o, = |31 or, = |31
13 22



Sk4+1 X S141 acts on a volume vector 7 as rearrangements of rows and columns of
a matrix. Two regular triangulations 7" and 7" are in the same orbit if and only if
their volume vectors 7 and @7+ are in the same orbit, since the correspondence
between regular triangulations and volume vectors was one-to-one (cf. Theorem
2.5). We introduce an order on volume vectors, and define the representative of
the orbits.

Definition 4.5 (lexicographic order on matrices) We take lexicographic or-
der as the ordering on the matrices R*™ x R"*'. A matrix (a;;) is smaller than
(bi;) if for some (2o, Jo), @iy < biyj,, and for any (¢,j) such that ¢ < i or such
that ¢ = 79 and j < jo, aij; = b,‘j.

Definition 4.6 (order on regular triangulations) We introduce a total or-
der on regular triangulations by comparing their volume vectors as matrices.

Definition 4.7 (representative of orbits of regular triangulations) The
representative of an orbit of regular triangulations is the maximum one.

In Fig.4, T» becomes the representative of the orbit {T7,7T>}.

Lemma 4.8 Given a regular triangulation T, the representative element of its
orbit can be computed in O(I! k?12) time.

Proof. In order to choose the representative triangulation from the orbit of
a given regular triangulation, we look for an element of Si;1 X Si41 whose
corresponding rearrangement maximizes the matrix of the volume vector 7.
We check all of the (I + 1)! arrangements of columns. For each of them, the
maximum can be obtained by sorting the rows. There are k + 1 rows of length
l+1. Comparing two integers in unit time, a comparison between two rows takes
O(l + 1) time. So we can sort the rows in O((k + 1)2(I + 1)) time. Hence the
whole time complexity is O((I + 1)! (k + 1)?(1 + 1)) = O(I'k21?). O

5 Enumerating regular triangulations of A; X A4,

5.1 Enumerating all regular triangulations

We show the enumeration of regular triangulations of arbitrary configurations
of points, and apply this to the case of A x A;. This takes time linear to the
cardinality of the whole set of regular triangulations and requires memory linear
to the size of a triangulation.

We define two triangulations to be adjacent if they can be modified along
a circuit. For example, triangulations T3 and Ty in Fig.4 are adjacent, because
they can be modified along the circuit consisting of the vertices of the upper two
tetrahedra.

Definition 5.1 The structure of reverse search for regular triangulations of an
arbitrary point configuration (@, .A) is



— S = {regular triangulation}
— Adj(T,i) = (the i-th regular triangulation which can be modified from T'
along a circuit)
Adj(T,4) if the largest regular triangulation Adj(7,7) among those

- f(T) = adjacent to T is larger than T'
T otherwise

The index i in the definition of Adj(T,%) is not of importance. Because regular
triangulations correspond to the vertices of the secondary polytope ¥(.A), and
lexicographic order is same as the ordering of the vertices by the inner product
with a vector (N*+DU+D) N+ -1" " 'N) with sufficiently large N, re-
verse search works. In fact, this is a geometric version of linear programming (cf.
[20, Theorem 3.7.]). This algorithm for enumerating all regular triangulations
for arbitrary configurations of points is from [14]. We apply this to the case of
A X Ay

Theorem 5.2 ([14]) The structure of Definition 5.1 enables reverse search. For
the case of A X A; the time complexity is O((k:l)2k3l3 LP(kl, (k:l)(k +1+
1))#R), where LP(n,m) is the time required to solve a linear programming
problem with m strict inequalities constraints in n variables, and R is the set of

regular triangulations of A x A;. The memory required is linear to the size of
a triangulation.

5.2 Enumerating equivalence classes of a reverse search tree

The reverse search structure in Definition 5.1 enabled us to enumerate the regular
triangulations (Theorem 5.2). However the objects we wanted to enumerate were
the orbits, or classes, of regular triangulations. In this subsection, we show how
to enumerate these classes of a reverse search tree.

Definition 5.3 A reverse search structure, total order and equivalence relation
(which we denote by ~) on a set is a structure for reverse search of classes, if

— for any element, its parent is the largest one among the elements adjacent
and itself, and

— a adjacent to b and ¢ ~ a implies the existence of an element d adjacent to
cand d ~ b, for any a, b and c.

Theorem 5.4 For the structure for reverse search of classes in Definition 5.3,
we can enumerate the classes of elements by the following structure of reverse
search. We use the notation in Definition 3.1 for the original reverse search
structure of the elements, denote the class including an element a by [a] and its
maximum element, which we take as the representative, by amax.

— S/~={]a] : a is an element} is the set we want to enumerate
[Adj(@max,?)] if [Adj(@max,?)] 7 [@max] and if

— Adj([a],7) = [Adj(amax, )] # [Adj(amax, j)] for any j <7
] otherwise



- f([a]) = [f(a’max)]

The time complexity is O(6(8(time(Adj)+time(representative))+time(f))#(S/~
)) where time(representative) is the time to compute the representative element
of the class of an given element. The memory required is § times the size of an
element.

Proof. Remind that we supposed the adjacency relation to be symmetric:
Adj(a,?) = b implied Adj(b,7) = a for some j. Then this also holds for the
adjacency relation of the classes: if Adj([amax],?) = [bmax], Adj(@max,t) = ¢
for some ¢ ~ by.x, then there exists d ~ amax adjacent to byax. Two classes
are adjacent if and only if there are adjacent elements from each of them. Any
element of a class has an adjacent element in all the class-wise adjacent classes.
Thus the degree for the reverse search of classes is not larger than the degree of
the original reverse search.

The only class [a] with f([a]) = [a] is the class which includes the original
root element. For other classes f([a]) = [b] implies amax < f(@max) < bmax- By
applying f several times we can move from these classes to the root class. And,
if f([a]) = [b] and [a] # [b], two classes [a], [b] must be adjacent.

During the enumeration, we have to “jump” to the representative element
of the class we visited. The modification of the adjacency function avoids self
and multiple adjacency. The time complexity of the adjacency function be-
comes é(time(Adj) + time(representative)), and the parent function time(f) +
time(representative). The adjacency function needs an extra object to be mem-
orized. O

5.3 Using symmetry

Now we apply the reverse search for equivalence classes to the regular triangu-
lations, and enumerate all orbits in time proportional to their cardinality.

Theorem 5.5 By applying the reverse search of classes in Theorem 5.4 to the
original reverse search structure in Definition 5.1, we can enumerate the orbits
of regular triangulations of (A, x A, vert(Ag x 4;)). The time complexity is
0((k;l)2(k313 LP(kl, (1) (k + 1 + 1)) + k221)#(R/~)), where R/~ is the or-
bits of regular triangulations. The memory required is linear to the size of a
triangulation.

Proof. Since the total order was the lexicographic order of volume vectors in
matrix form and the equivalence relation was the rearrangement of rows and
columns of the matrices (Definitions 4.4, 4.6, 4.7) the conditions in Definition
5.3 is satisfied. Hence the the reverse search of classes in Theorem 5.4 works.
The time to compute the representative element is O(I! k?I1?) by Lemma 4.8. The
l! here appears in the whole time complexity, but since we are just finding the
maximum arrangement of a small matrix (remind the instances we have to solve
are for k,l = 3 or 4), practically this is not time consuming compared to solving

Lp.O



6 Preparations for enumerating all triangulations

Definition 6.1 Let (conv(.A),.A) be an arbitrary configuration of points.

— S = {0 € 24 : maximal dimensional simplex of (conv(A),A)}

— Two simplices in S intersect if their intersection is not a face for at least one
of them.

— The intersection graph of S is a graph with S the vertices and edges between
two intersecting simplices.

— T ={I €25 : independent set of the intersection graph of S}

— M ={I € 2° : maximal independent set of the intersection graph of S}

— T ={{0o1,...,0,} €25 : a set of maximal dimensional simplices in a trian-

gulation of (conv(.A), A)}

The maximal dimensional simplices in a triangulation 7 must not intersect,
so 7 C Z. We cannot add anymore maximal dimensional simplex to a triangula-
tion in 7 without intersecting, so they are maximal. Thus 7 C M [9]. In the next
section we show an algorithm to enumerate M, which leads to the enumeration
of T the triangulations of (conv(.A),.A). The difference of 7 and M becomes a
loss. This sort of thing happens for Schénhardt’s polyhedron (cf. [15, 10.2.1]).
This is a concave polyhedron made by twisting a little bit a triangle of a prism.
We cannot take anymore simplex with vertices among the six vertices from this
polyhedron. The set made by the three tetrahedra fitting the outer concave part
of this polyhedron, becomes a maximal independent set of the convex polytope
of the six points. But, it is not a triangulation, because the inner part is left.
The authors do not know if this kind of gap occurs for the case of Ay x A;.

7 Enumerating all triangulations—as a subset of maximal
independent sets

7.1 Triangulations for arbitrary configurations of points

Triangulations can be regarded as a subclass of the maximal independent sets of
the intersection graph of maximal dimensional simplices [9]. Efficient algorithms
to enumerate maximal independent sets are known [11], [19]. We apply one of
these algorithms to our case, and propose a triangulation enumerating algorithm.
This algorithm handles arbitrary configurations of points.

First, we cite from [11] the algorithm we use for enumerating maximal in-
dependent sets. The algorithm is called the generalized Paull-Unger procedure
with improvements by Tsukiyama, Ide, Ariyoshi and Shirakawa [19].

Let the set of vertices be E = {1,...,n} and c the independence testing time.
We define M ; the family of independent sets that are maximal within {1,...,j}.
We construct M, from M;_,, starting from M, = {0}, to obtain M,, = M.
For each I in M;_;, we test the independency of U {j}. If it is independent, we
add it to M. If not independent, we add I and other maximal independent sets
of M; included in TU {j}. If I' is such set, it should be maximal in T U {j}. We



use this fact reversely: first list up the maximal independent sets in T U {3}, and
check if they are in M;. The algorithm elaborates to produce I’ from a single
I. We show it in Figure 5.

This computation performs a search on a tree. Nodes at level j correspond to
members of M with the tree rooted by 0. For each I in M _;, the corresponding
I' (possibly several) in M, are its children. We start with the root §. Several
searching methods are possible, but we take depth first search here.

Theorem 7.1 ([11]) The algorithm in Fig.5 enumerates all maximal indepen-
dent sets in O(nc'K +n?cKK') time and O(nK') memory. Here K = #M and
we suppose that in Step 1, for each I € M;_, at most K’ sets I' are found in
¢ time.

Theorem 7.2 If we have F = § with an arbitrary fixed order and an oracle that
answers in unit time the previous or next simplex for a given one, and apply the
algorithm in Fig.5 to enumerate all maximal independent sets of the intersection
graph of S, it works in O(m time(intersect)(#S)?# M) time with the memory for
the size of one triangulation. Here m = max;caq #1 is the maximum cardinality
of maximal dimensional simplices in M and time(intersect) is the time to judge
if two simplices intersect properly.

Proof. For the independence test, or the test in Step 1, in actual we only have
to check the intersection of a newly added simplex with the less than m current
ones in I, so ¢ and ¢ in Theorem 7.1 is computed in m - time(intersect) time.
In Step 1, for each I in M;_, the applicants we take are, if TU {j} € M;, I' =
Tu{j}, and if not I and the set of simplices in I U {5} except those intersecting
with j, so K’ < 2. Since we have the oracle mentioned above, we can traverse
the search tree only with the information of our current independent set I and
depth j, which is practically same as the size of a triangulation. Furthermore,
since backtracking is easy, the order of time complexity does not change. O

7.2 Triangulations for A, X A

Theorem 7.3 For the point configuration (A x A;,vert(Ar x 4;)) the algo-
rithm in Fig.5 enumerates all maximal independent sets of the intersection graph
of S in O((*") (k + )k?1?*4 M) time with the memory for the size of a trian-
gulation.

Proof. The simplices in Ay x A; correspond to spanning trees of the bipartite
graph Kyi1 541 [7, 7.3.D.]. We can generate such trees using a constant time per
tree with small memory [10], [16], so the oracle mentioned in the Theorem 7.2
exists, which means that we do not have to memorize all the (k + 1)/(1 + 1)*
simplices. By Lemma 4.1, m = (k:l), by Lemma 4.2, #S = (k + 1)!(I + 1)*.
Because judging the intersection of simplices for this product of simplices case
can be transformed to a graph problem as in Lemma 4.3, this judgement can be
done quickly: time(intersect) = O(k +1). O

Applying this method to enumerate the orbits of triangulations would be a future
work.



References

[1] Davip Avis & KoMmEl FUKUDA: A Pivoting Algorithm for Convex Hulls and Vertex
Enumeration of Arrangements and Polyhedra, Discrete Comput. Geom. 8 (1992),
295-313

[2] DaviD Avis & KoMEI FUKUDA: Reverse Search for Enumeration, Discrete Appl.
Math. 65 (1996), 21-46

[3] Louis J. BILLERA, PAUL FILLIMAN & BERND STURMFELS: Constructions and
Complezity of Secondary Polytopes, Advances in Math. 83 (1990), 155-179

[4] JEsUs A. DE LOERA: Computing Regular Triangulations of Point Configurations,
1994 ftp://cam.cornell.edu/pub/puntos/help.ps

[5] JesUs A. DE LOERA: Nonregular Triangulations of Products of Simplices, Discrete
Comput. Geom. 15 (1996), 253-264

[6] JesUs A. pE LOERA, SERKAN HOSTEN, FRANCISCO SANTOS & BERND STURM-
FELS: The Polytope of All Triangulations of a Point Configuration, Doc. Math. 1
(1996), 103-119

[7] IsRAEL M. GELFAND, MIKHAIL M. KAPRANOV & ANDRE! V. ZELEVINSKY: Dis-
criminants, Resultants and Multidimensional Determinants, Birkhauser, Boston
1994

[8] ISRAEL M. GEL’FAND, ANDREI V. ZELEVINSKII & MIKHAIL M. KAPRANOV: New-
ton Polyhedra of Principal A-determinants, Soviet Math. Dokl. 40 (1990), 278-281

[9] HirosHI Imal & KEIKO IMaL: Triangulation and Convez Polytopes, in: “Geometry
of Toric Varieties and Convex Polytopes”, RIMS Kokyuroku 934 (1996), Research
Institute for Mathematical Sciences, Kyoto University, 149-166 (in Japanese)

[10] H. N. KAPOOR & H. RAMESH: Algorithms for Generating All Spanning Trees of
Undirected, Directed and Weighted Graphs, Lecture notes in Computer Science,
Springer-Verlag, 1992, 461-472

[11] E. L. LawLER, J. K. LENSTRA & A. H. G. RiNNoOY KaN: Generating All
Mazimal Independent Sets: NP-Hardness and Polynomial-Time Algorithms, SIAM
J. Comput. 9 (1980), 558-565

[12] CARL W. LEE: Regular Triangulations of Convezr Polytopes, in: “Applied Geome-
try and Discrete Mathematics—The Victor Klee Festschrift” (Peter Gritzmann and
Bernd Sturmfels, eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 4, Amer. Math. Soc. 1991, 443-456

[13] TOMONARI MASADA: An Algorithm for the Enumeration of Regular Triangula-
tions, Master’s Thesis, Department of Information Science, University of Tokyo,
March 1995

[14] TomoNARI MAsapa, HirosHI Imar & KEIKO IMAl:  Enumeration of Regular
Triangulations, in: “Proceedings of the Twelfth Annual Symposium on Computa-
tional Geometry” Association for Computing Machinery (ACM), New York 1996,
224-233

[15] JoseEpH O’ROURKE: Art Gallery Theorems and Algorithms, International Series
of Monographs on Computer Science 3, Oxford University Press, New York 1987

[16] A. SHIOURA, A. TAMURA & T. UNO: An Optimal Algorithm for Scanning All
Spanning Trees of Undirected Graphs SIAM J. Comp., to appear

[17] BERND STURMFELS: Grébner Bases of Toric Varieties, Téhoku Math. J. 43
(1991), 249-261

[18] BERND STURMFELS: Grobner bases and convexr polytopes, University Lecture
Series 8, American Mathematical Society, 1996

[19] SHuJI TsukivyaMa, MIKIO IDE, HIROMU ARIYOSHI & ISAO SHIRAKAWA: A New
Algorithm for Generating All the Maximal Independent Sets SIAM J. Comput. 6
(1977), 505-517

[20] GUNTER M. ZIEGLER: Lectures on Polytopes, Graduate Texts in Mathematics
152, Springer-Verlag, New York 1995



Fumihiko Takeuchi:
fumi@is.s.u-tokyo.ac.jp
Hiroshi Imai:
imai@is.s.u-tokyo.ac.jp

. . V24

b d

S ={r,a,b,c,d} Adj(c,1) =7
6=3 Adj(c,2) = b
Adj(r,1) =a Adj(c,3) =d
Adj(r,2)=c¢ Adj(d,1) =¢
Adj(r,3) =0 Adj(d,2) = a
Adj(a,1) = r Adj(d,3) =b
Adj(a,2) =b fir)y=r
Adj(a,3) = fla)y=r
Adj(b,1) = ¢ f(b)=a
Adj(b,2) = d fley=r
Adj(b,3) = a fld)=a

Fig.1. An example of a set and its ad-
jacency (top left), parent-children rela-
tion (top center), the reverse search tree
(top right) and the structure in formulas
(above)

ReverseSearch(§, Adj, f,r)

vi=r 7:=0
repeat
while ;<6 do
j:i=J3+1 next= Adj(v,J)
if next #0 then
if f(next) =v then
{v:=nest j:=0}
if v#r then
ui=v v:= f(v)
7: =0
repeat j:=j+1
until Adj(v,j5) =u
until v=7r and j=29§

Fig. 2. The algorithm of reverse search

Ayx A
8, as 1X 81
e e
t 1 2
1 f f
e e 1
1 2
e e,
1 2
f2 f5 f
AZXAl .
A2 L3 o e
1
€ f fl
e1< fe3 e
1 £2
e, € k- 2
3 f, f

Fig. 3. Product of simplices: Ay X A; and
Az X A1

i 7N
4N

1 T

V4
X

o
1
o

o
o
NN

T3 Ta

Fig. 4. Triangulations for Ay x A; and
AQ X A1

Step 1. For each I € M _1, find all independent
sets I' that are maximal within T U {j}.

Step 2. For each such I’, test I' for maximal-
ity within {1,...,5}. Each set I’ that is maximal
within {1,...,7} is a member of Mj, and each
member of M; can be found in this way. How-
ever a given I’ € M; may be obtained from more
than one I € M;_1. In order to eliminate dupli-
cations we need one further step.

Step 3. For each I' obtained from I € M _1 that
is maximal within {1,...,j}, test for each ¢ < j,
i¢ I, theset (I'\{7HUIN{L,...,i—1})u{s}
for independence. Reject I’ if any of these tests
yields an affirmative answer. (This step retains I’
only if it is obtained from the lexicographically
smallest I € ./\/l]-_l.)

Fig.5. The algorithm for enumerating
maximal independent sets



