ゲノムワイド関連解析(GWAS) による高血圧遺伝子の解明

竹内史比古 国立国際医療研究センター研究所

2016年統計関連学会連合大会 2016.09.06 @金沢大

パワーポイント:

http://fumihiko.takeuchi.name

DNA多型とは?

- 各人のヒトゲノム
 - 染色体
 - 23本(父由来)+23本(母由来)
 - DNA
 - A, C, G, Tの並び
 - 3 x 10⁹ 塩基対(父由来)
 + 3 x 10⁹ 塩基対(母由来)
- DNA多型
 - DNAで個人差がある箇所
 - 日本人集団中での頻度≥1%
 - 6 x 10⁶ 箇所

2	3	4	5	6	7	8	9
 11	12	13	80 14	15	16	17	18
 19	20	21	22		Y	or	

太郎
ACT GAA GTG····(父由来)
ACT GAA GTG····(母由来)
花子
ACT GAA GTG····(父由来)
ACT AAA GTG····(母由来)
大輔
MCT GAA GTG····(母由来)
ACT AAA GTG····(母由来)
G/AがDNA多型
Aの頻度が 2/6=33%

DNA多型と体質

- アルデヒド脱水素酵素2遺伝子
- DNA多型
 - c.1510G>A (p.Glu504Lys) rs671
 - •••ACT GAA GTG•••
 - •••ACT AAA GTG•••
- ・ 遺伝型GGの人
 - お酒飲める
- ・ 遺伝型AGの人
 - 酵素活性が1/16
 - お酒を飲むと赤くなる
- 遺伝型AAの人
 - 酵素活性ない
 - お酒が飲めない

↓アルデヒド脱水素酵素2

酢酸

DNA多型と飲酒行動

遺伝型(アルデヒド脱水素酵素2 rs671)

遺伝型と飲酒行動が明確に関連している。

Takeuchi et al. (2011) Circ J 75:911

DNA多型と病気

- 疾患感受性遺伝子とは
 - DNA多型により、病気の罹り易さ(感受性)が変わる遺伝子
- 疾患感受性遺伝子を見つける意義
 - 病気の仕組みの解明
 - 創薬のターゲットになる
 - 個人の発症予測・至適治療法の選択(個別化医療)
- 疾患感受性遺伝子がそもそも存在するか?
 - 疾患感受性の素因は、遺伝と環境(食事など)
 - 家族集積性から遺伝が占める割合(遺伝率)が分かる
 - 糖尿病 0.5
 - 身長 0.8
- こういうのをごっそり見つけよう→ゲノムワイド関連解析(GWAS)

DNA多型と疾患の関連解析

- DNA多型と疾患
 - 生体階層構造の両端に離れている
 - 関連をゲノムワイドに検定するのが、
 ゲノムワイド関連解析(GWAS)
 - 統計的関連が、ヒトでの因果関係 を示唆する
 - 中間は、ブラックボックスとしてよい
 - 遺伝統計学は疾患解明・治療法開 発の強力な手段の一つ

ゲノムワイド関連解析(GWAS)

- 目標
 - ゲノムワイドに、DNA多型の全てについて疾患との関連 を検定する
- DNA多型は6x10⁶個あるが、染色体上で近傍のものは相関している(連鎖不平衡)ので、独立なものは正味10⁶個
- 約10⁶回の多重検定を行うので、擬陽性を抑える ために、有意水準を 0.05/10⁶ = 5×10⁻⁸ と厳しくし ないといけない
- 検出力を上げるためには、罹患者・健常者を数
 千人調べる必要がある

ゲノムワイド に網羅的に 調→ 育厳→ 意水する しくする プルが必要

DNA多型同士の相関(連鎖不平衡)

- 染色体19
 番の
 200x10³塩
 基対の領
 域中の108
 DNA多型
- 日本人45
 人(染色体 90本)

DNA多型と疾患の関連の検定

- i番目の人の遺伝子型を x; = 0, 1, 2
 - 例、DNA多型がG/Aのとき、0(GG),1(AG),2 (AA)
- 連続形質(血圧など)との関連の検定
 - i番目の人の形質の値を y_i
 - 線形回帰
 - 誤差 ε_i ~ Normal(0, σ²)

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- 帰無仮説: β = 0
- 疾患との関連の検定
 - i番目の人の表現型を yi = 1(罹患), 0(健常)
 - ロジスティック回帰
 - $y_i \sim \text{Bernoulli}(p_i)$
 - 帰無仮説: β = 0
- $\log \frac{p_i}{1 p_i} = \alpha + \beta x_i$ • 尤度を最大化する $\hat{\alpha}_{.B}$ を求める

関連検定の検出力

• y の分散は、x で説明される部分(S_R)と残差平方和(S_E)に分解できる

$$\sum_{i=1}^{N} (y_i - \overline{y})^2 = \sum_{i=1}^{N} (\hat{\alpha} + \hat{\beta} x_i - \overline{y})^2 + \sum_{i=1}^{N} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$
$$= S_R + S_E$$

- 検定に用いる統計量 S_R/{S_E/(N-2)} は
 - 関連が無いとき(帰無仮説)は F_{1,N-2}分布に従う
 - – 関連が有るとき(対立仮説)は非心度パラメータ N R²/{1-R²}の F_{1,N-2}
 分布に従う
 - 連続形質 y の分散のうち、DNA多型 x で説明される割合を R² とする(決 定係数)。これは相関係数の二乗。
 - N はサンプルの人数
- 有意水準 5x10⁻⁸のもとで、検出力が 80% となるのは、非心度パラメータが 約40のとき
 - R²=0.1 なら N=360
 - R²=0.01 なら N=4000(例、日本人での糖尿病に対する KCNQ1)
 - R²=0.005 なら N=8000(例、同じく CDKAL1)
 - R²=0.001 なら N=40000
 - ざっくり N≒40/R²
 - → 弱い関連を検出するには多数のサンプルが必要

(高)血圧の大規模GWAS

Study	Publication	人数	ゲノムワイド有 意なDNA多型 の数	うち新規の もの
WTCCC	Nature 447:661 <i>,</i> 2007	英国人5000	0	0
Global BPgen	Nat Genet 41:666, 2009	欧米人34433+追試	8	8
CHARGE	Nat Genet 41:677, 2009	欧米人29136+追試	8	8
AGEN- BP	Nat Genet 43:531, 2011	東アジア人19608 + 追試	7(+2)	5
ICBP	Nature 478:103, 2011	欧米人69395+追試	29	16
igen-bp	Nat Genet 47:1282, 2015	東アジア人31516 + 欧米人 35352 + 南アジア人33126 + 追試	35	12

GWASで見つかった血圧関連DNA多型

GWASの大規模化による検出力向上

Visscher et al. (2012) AJHG 90:7

GWASの成功

http://www.ebi.ac.uk/gwas/

Welter et al. NAR (2014) 42:D1001

GWASのメタ解析

- 1施設のGWASではサンプル数に限りがあり、複数の GWASをメタ解析するのが、今は主流
- 連続形質y_iは、例えば血圧
- 個別GWASで、DNA多型の効果を推測
 - $y_i = \alpha + \beta x_i + \varepsilon_i$ - *i*番目の人のDNA多型遺伝子型を x_i = 0, 1, 2
 - *i*番目の人の連続形質の値を y_i
 - 誤差 $\varepsilon_i \sim \text{Normal}(0, \sigma^2)$
 - 連続形質に対するDNA多型の効果βを線形回帰で推定
- 複数GWASで推定された効果をメタ解析で統合
 - j番目の研究における効果の推定値が β_i、標準誤差が s_i
 - 1/s²で重み付けした平均
 - 全体での効果の推定値 β、標準誤差が s
 - メタ解析では、個人情報(遺伝型、形質)は不要

$$\beta = \frac{\sum_{j} \frac{\beta_{j}}{s_{j}^{2}}}{\sum_{j} \frac{1}{s_{j}^{2}}}$$

$$s = \sqrt{\frac{1}{\sum_{j} \frac{1}{s_{j}^{2}}}}$$

さらなる大規模化で疾患感受性遺伝子が もっと見つかりそう

 身長・BMIについては、ありふれたDNA多型(1000人ゲノムで imputeできる多型)、遺伝率のほとんどを説明できる

形質	DNA多型で説明で きる分散	家族研究で推定さ れる遺伝率
身長	56%	60–70%
体重	27%	30–40%

 ありふれた形質については、恐らく、サンプル数を増やして 検出力を上げれば、関連が弱い遺伝子も見つかってくる

Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index

Jian Yang^{1,2,24}, Andrew Bakshi¹, Zhihong Zhu¹, Gibran Hemani^{1,3}, Anna A E Vinkhuyzen¹, Sang Hong Lee^{1,4}, Matthew R Robinson¹, John R B Perry⁵, Ilja M Nolte⁶, Jana V van Vliet-Ostaptchouk^{6,7}, Harold Snieder⁶, The LifeLines Cohort Study⁸, Tonu Esko^{9–12}, Lili Milani⁹, Reedik Mägi⁹, Andres Metspalu^{9,13}, Anders Hamsten¹⁴, Patrik K E Magnusson¹⁵, Nancy L Pedersen¹⁵, Erik Ingelsson^{16,17}, Nicole Soranzo^{18,19}, Matthew C Keller^{20,21}, Naomi R Wray¹, Michael E Goddard^{22,23} & Peter M Visscher^{1,2,24}

Limitations of GCTA as a solution to the missing heritability problem

Siddharth Krishna Kumar^{a,1}, Marcus W. Feldman^a, David H. Rehkopf^b, and Shripad Tuljapurkar^a

Nat Genet (2015) 47:1114

ただし異論もある PNAS (2016) 113:E61 PNAS (2016) 113:E4579 PNAS (2016) 113:E4581

まとめ

- ゲノムワイド関連解析(GWAS)では、多数の罹患者と健常者についてDNA多型をゲノム全体に渡って測定し、両グループで有意に頻度が異なるDNA多型を探索する。
- これまでに数百の疾患や形質についてGWASが行われ、
 万以上のDNA多型との関連が同定された。
- 高血圧などの生活習慣と関連する個々のDNA多型は(本物ではあるものの)関連が極めて弱いことが分かってきた。
- 検出力を上げるために大規模なサンプルが必要であり、 複数のGWASを統合するメタ解析、多人種を統合するメタ 解析が行われている。
- 今後の方向性
 - DNA多型と分子的形質の関連解析→熊坂先生講演
 - 疾患感受性DNA多型を利用した罹患予測→八谷先生講演
- パワーポイント http://fumihiko.takeuchi.name