ゲノムワイド関連解析と エピゲノム解析による 高血圧の機序解明

竹内史比古、清水華、加藤規弘国立国際医療研究センター研究所

第39回日本高血圧学会総会 SY9-1 2016.10.01 @仙台国際センター

パワーポイント http://fumihiko.takeuchi.name

日本高血圧学会 COI開示

国立国際医療研究センター 竹内史比古

演題発表に関連し、開示すべきCOI関係にある企業 などはありません。

<u>疾患感受性遺伝子</u>を見つけて病 気を解明する

- ・疾患感受性遺伝子とは
 - ・ DNA変異により、その病気の罹り易さ(感受性)が変わる遺伝子

- 見つける意義
 - ・病気の仕組みの解明
 - 創薬ターゲットの探索
 - ・ 個人の発症予測・至適治療法の選択(個別化医療)
- そもそも存在するか?
 - ・疾患感受性の素因は、遺伝と環境
 - ・ 家族集積性から遺伝が占める割合(遺伝率)が分かる
 - 高血圧 0.3
 - 身長 0.7
- ・疾患感受性遺伝子をごっそり見つけよう→ゲノムワイド関連 解析

鎌状赤血球貧血の感受性遺伝子

- *HBB*, ヘモグロビンβ遺伝 子
- •一塩基多型(SNP)
 - ある一塩基に個人差がある
 - c.20<mark>A</mark>>T (p.Glu7Val) rs334
- ・遺伝型は3種類
 - AA
 - 多くの人
 - TT
 - ヘモグロビンが凝集
 - 赤血球が鎌状になる
 - 赤血球が壊され貧血に
 - AT
 - ・ 貧血ない
 - マラリア原虫に感染しにくい

Jorde et al. Medical Genetics 4th ed, Fig. 3-8

1. ゲノムワイド関連解析 方法 • 成功と限界 • 2. エピゲノム解析 組織・機能から • 機序まで •

関連解析のコンセプト

• 疾患とSNP

- 生体階層構造の両端に離れている
- ・統計的関連(相関)が、ヒトでの因果
 関係を示唆する
- ・中間は、ブラックボックスとしてよい
- 関連解析
 - ・疾患と関連するSNPを見つける
 - ・関連SNPの位置にある遺伝子(転写 因子結合領域も含む)が、疾患感受 性遺伝子のはず
 - ・ゲノムワイドに関連SNPsを探索するのが、ゲノムワイド関連解析(GWAS)

ゲノムワイド関連解析(GWAS)

- 目標
 - ・ゲノムワイドに、ありふれた(頻度 ≥1%)SNPs全てについて疾患との関連を検定する
- 計測
 - 代表的なSNPsをマイクロアレイで測定し、残りのSNPs の情報は推測
- •統計解析
 - SNPsは6x10⁶個あるが、染色体上で近傍のものは相関している(連鎖不平衡)ので、独立なものは正味10⁶個
 - 約10⁶回の多重検定を行うので、擬陽性を抑えるために、 有意水準を 0.05/10⁶ = 5×10⁻⁸と厳しくしないといけない
 - 検出力を上げるためには、罹患者・健常者を数千人~
 数万人調べる必要がある
- ゲノムワイド に調→有厳→多次 る りしくする プルが必要
- → 多施設のGWAS研究のメタ解析が現在は主流

SNPs同士の相関(連鎖不平衡)

染色体19番の200kbの領域

108 SNPs

GWASに必要なサンプルサイズ

- ・有意水準 5x10⁻⁸のもとで、検出力を 80% にする には、40/R²人必要
 - *R*²(決定係数): 疾患・形質 y の分散のうち、SNP遺伝子型 x で説明される割合。これは相関係数の二乗。

SNPのSBPへの効果 [mm Hg]	R ² [%]	必要なサンプルサイズ [人数]
1	0.13	32,000
0.5	0.06	64,000
0.25	0.03	128,000

- F_{1,N-2}分布の非心度パラメータが40になればよい
- SNPの効果がβ、アリルの頻度がpのとき、R² = 2 p (1-p) β²
- アリル頻度0.5、SBPの標準偏差を20 mmHgとした

GWASの成功 http://www.ebi.ac.uk/gwas/

Welter et al. NAR (2014) 42:D1001

GWASの成功

http://www.ebi.ac.uk/gwas/

The interactive GWAS diagram is a visualization of all SNP-trait associations with P $<5 \times 10-8$, mapped to the SNP's cytogenetic band.

Welter et al. NAR (2014) 42:D1001

GWASの大規模化による検出力向上

(高)血圧の大規模GWAS

Study	Publication	年	スクリーニング症例数 [万人]				追試症例	ゲノムワイ	新規SNPs
			欧米	東アジア	南アジア	アフリカ	数 [万人]	_F 有意な SNPsの数	の数
wтссс	Nature 447:661	2007	0.5					0	0
Global BPgen	Nat Genet 41:666	2009	3				11	8	8
CHARGE	Nat Genet 41:677	2009	3				3	8	8
AGEN-BP	Nat Genet 43:531	2011		2			3	10	5
ICBP	Nature 478:103	2011	7				13	29	16
COGENT	Am J Hum Genet 93:545	2013				3	10	5	3
igen-bp	Nat Genet 47:1282	2015	4	3	3		22	35	12
CHD Exome+, ExomeBP, GoT2D	Nat Genet 電子版	2016	17		3		16	51	30
CHARGE+ Exome	Nat Genet 電子版	2016	12			2	18	70	31
Cardio– Metabochip	Nat Genet 電子版	2016	20				14	66	17
								122	

まとめ: GWASの成功と限界

- 成功
 - ・ゲノムワイド関連解析(GWAS)では、多数の罹患者と健常 者についてSNPsをゲノム全体に渡って測定し、両グループ で有意に頻度が異なるSNPsを探索する。
 - これまでに数百の疾患や形質についてGWASが行われ、
 万以上のSNPsとの関連が同定された。
 - (高)血圧については、20万人にのぼるGWASから、122
 SNPsが同定された。
- •限界
 - 互いに連鎖不平衡にある複数の疾患関連SNPsが同定されることが多い。そこの染色体領域に、複数の遺伝子があるときは、どれが疾患感受性遺伝子か絞り込めない。
 - ・疾患感受性遺伝子が、どの組織?どういう機能?で働くかの解明は、post-GWAS解析が必要。

エピゲノム解析のアプローチ

- 組織差を調べる
 - NIH Roadmap Epigenomeコンソーシアム [Nature (2015) 518:317]
 - ・111もの組織・細胞株(組織毎のサンプル数は小さい)
 - ・様々なエピゲノム測定
 - ・ ヒストン修飾、DNAメチル化、 DNAアクセス、RNA発現

・機能変化を調べる

http://www.roadmapepigenomics.org/

- エピゲノムワイド関連解析(EWAS)
 - ・ 数百~数千の症例を調べる。GWASと似た発想
 - ・ EWASでいま現実的なのは、DNAメチル化のアレイによる測定
 - 末梢血を用いることが多い(他の組織の代用とする)
- 細胞・動物実験による機能解析

→ エピゲノム解析により、GWASで同定された疾患感受性 遺伝子が、どのような組織・機能で働くか解明されつつある

血圧関連SNPsがどの組織の転写 制御領域にあるか

- 123の組織・細胞株のうちどれで、転写制御領域
 (DNase I高感受性領域)に血圧関連SNPsが過剰にあるか
 - ・血管の組織・細胞株
 - 内皮細胞
- SNPsがこれらの組織 で「効いている」

血圧関連SNPsは、近傍のDNAメチル化 と関連する傾向がある

- 血圧関連SNPsの周辺1MbのCpGサイトで、メチル化度とSNP遺 伝子型が関連するものを探索
- SNP近傍(1kb~244kb)のCpGサイトが関連
- ・全体的にみると近傍の関連CpGサイトが多め(ゲノム平均の2倍)
- •「SNP→DNAメチル化→血圧」という経路の機能を示唆

FTO遺伝子のイントロンに位置する 肥満関連SNPsのエピゲノム解析

- 肥満のGWASで、関連SNPsがFTO 遺伝子のイントロンに見つかった
- 2. [組織] この領域がエンハンサーに なっているのは、間葉幹細胞・脂肪 細胞
- [機能] SNP rs1421085は転写因子 結合部位にある。肥満型アリルで、 ARIDモチーフが壊れている
 - 下流のIRX3, IRX5遺伝子を制御
 - ・ 転写因子ARID5Bが原因
- IRX3, IRX5は脂質貯蔵、ミトコンドリ ア代謝に関連
- 5. KO生物で、肥満・やせを確認

[Claussnitzer et al. (2015) NEJM 895:907]

FTO遺伝子のイントロンに位置する 肥満関連SNPsのエピゲノム解析

 1. 肥満のGWASで、関連SNPsがFTO 遺伝子のイントロンに見つかった

500kb, 1.2mb 離れている

- 2. [組織] この領域がエンハンサーに なっているのは、間葉幹細胞・脂肪 細胞
- [機能] SNP rs1421085は転写因子 結合部位にある。肥満型アリルで、 ARIDモチーフが壊れている
 - 下流のIRX3, IRX5 遺伝子を制御
 - 転写因子ARID5Bが原因
- IRX3, IRX5は脂質貯蔵、ミトコンドリ ア代謝に関連
- 5. KO生物で、肥満・やせを確認

- SGBS脂肪細胞(前駆細胞)で、肥満の遺伝型 vs
 やせの遺伝型で、IRX3, IRX5が発現変化
- 分化した脂肪細胞では発現変化せず
- FTO遺伝子は関係なかった!

[Claussnitzer et al. (2015) NEJM 895:907]

FTO遺伝子のイントロンに位置する 肥満関連SNPsのエピゲノム解析

- 1. 肥満のGWASで、関連SNPsがFTO 遺伝子のイントロンに見つかった
- 2. [組織] この領域がエンハンサーに なっているのは、間葉幹細胞・脂肪 細胞
- [機能] SNP rs1421085は転写因子 結合部位にある。肥満型アリルで、 ARIDモチーフが壊れている
 - 下流のIRX3, IRX5遺伝子を制御
 - 転写因子ARID5Bが原因
- IRX3, IRX5は脂質貯蔵、ミトコンドリ ア代謝に関連
- 5. KO生物で、肥満・やせを確認

[Claussnitzer et al. (2015) NEJM 895:907]

まとめ: post-GWASとしてのエピゲノム解析

エピゲノム解析により、GWASで同定された疾患感受性遺伝子が、どのような組織・機能で働くか解明されつつある。

- 血圧関連SNPsは、血管・内皮細胞などの組織で、転写 制御領域中に位置していた。
- 血圧関連SNPsは、同時にDNAメチル化とも関連を示しており、DNAメチル化が、SNPと血圧の個人差をつなぐ 分子機能の一部を成すことが示唆された。
- FTOイントロンに位置する肥満関連SNPは、前駆脂肪 細胞で、転写因子結合部位を壊すことにより、脂質貯 蔵・ミトコンドリア代謝に影響し、肥満を起こしていた。

パワーポイント http://fumihiko.takeuchi.name