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ABSTRACT

The aim of this research is to study triangulations in general dimension through
enumeration. Many results have been achieved for triangulations in dimension two.
For triangulations in general dimension, regular triangulations, which form a subclass
of all triangulation, have been studied recently. However nonregular triangulations are
not yet well understood

We first propose an algorithm to enumerate all triangulations for arbitrary config-
urations of points. Regular triangulations form a nice algebraic structure, and algo-
rithms to enumerate them efficiently is known. However, no such thing was known
for all triangulations. We accomplish this by characterizing triangulations as maximal
independents sets of an intersection graph, and enumerating the maximal independent
sets. The intersection graph here, is a graph with vertices the maximal dimensional
simplices of the given point configuration, and edges between improperly intersecting
simplices. Thus triangulations form a subset of the maximal independent sets of this
graph.

We next propose an algorithm to enumerate efficiently the regular triangulations
of highly symmetric polytopes. Among those we are interested in triangulations of
products of two simplices and hypercubes. It is not efficient to enumerate naively
the triangulations of these symmetric polytopes, because we may count the “same”
triangulation many times. We accomplish this by enumerating classes of triangulations
in respect of symmetry. This is done by introducing reverse search for classes of objects.

We also consider facets of independent set polytopes of intersection graphs of sim-
plices. We deal with two intersection graphs. The intersection graph of d-simplices
and the graph of (d — 1)-simplices for point configurations having dimension d. The
independent set polytopes are the convex hulls of the incidence vectors of the indepen-
dent sets of these graphs. As a special case, we deal with points spanning the plane.
We give a proof that an inequality known to be powerful for the minimum weight

triangulation problem is defining a facet of the independent set polytope.
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Chapter 1

Enumeration of triangulations

We propose an algorithm to enumerate all triangulations, regular or not, for arbitrary
configurations of points in general dimension. There are many results for triangulations
in two dimension, but little is known for higher dimensions. Algorithms to enumerate
regular triangulations are studied well, however, no efficient algorithm to enumerate
all triangulations, including nonregular ones, has been known. Our algorithm handles
this problem for arbitrary configurations of points. It formulates triangulations as
maximal independent sets of an intersection graph, and is based on a general maximal
independent set enumeration algorithm. The intersection graph here is the graph with
all maximal dimensional simplices the vertices and edges between those intersecting
improperly. This algorithm works in time proportional to the number of maximal
independent sets. The memory required is twice the size of a maximal independent
set. We also show an application of this algorithm to the case of polytopes of the

products of two simplices.

1.1 Introduction

Gel’fand, Kapranov and Zelevinsky introduced the secondary polytope for point con-
figurations in general dimensional space, and showed that its vertices correspond to
regular triangulations [7], [8]. Using this property, regular triangulations can be enu-
merated by enumerating the vertices of that polytope. Billera, Filliman and Sturmfels
studied the structure of this secondary polytope with relation to volume vectors, and
analyzed the complexity computing the polytope. They also proposed the universal
polytope, in which the vertices correspond to all triangulations, but it has not resulted
in a practical triangulation enumeration method [3].

We have been interested in the triangulation of products of two simplices Ay x Ay,
where k£ and [ are their dimensions. Their regular triangulations have relations with
other branches of mathematics, such as Grébner bases [21], [22]. De Loera devised a
program to enumerate regular triangulations for given sets of points. He enumerated

the triangulations, all of which are regular, for Ay x Az and Ay x Ay [4], [5].



De Loera found a nonregular triangulation in As x Ag. So, it is important also to
enumerate all triangulations, regular or not. Though there are some results [6], there
is no efficient algorithm to enumerate all triangulations in dimension higher than two.
Our algorithm enumerates them for arbitrary configurations of points. We character-
ize triangulations as a subclass of maximal independent sets of the intersection graph
of the maximal dimensional simplices, and apply a general maximal independent set
enumeration algorithm. The time complexity is proportional to the number of max-
imal independent sets, the objects we really enumerate. When triangulations form a
proper subset of the maximal independent sets, the gap between them becomes a loss.
If this gap is small, this algorithm is efficient, the first efficient one, to enumerate all
triangulations. The existence of this gap is determined geometrically by the configu-
ration of points. In two dimension this does not happen, and in three dimension, we
have Schonhardt’s polyhedron (cf. [18, 10.2.1]) for example. However we are thinking
that the gap may be small even in higher dimension. The memory required in this
algorithm is only about the size of two triangulations.

Finally, we apply this to the case of the product of two simplices. The number
of the simplices, the vertices of the intersection graph, increases exponential to the
dimension, but we cope with this by using their correspondence with spanning trees
of an bipartite graph, and memorizing one simplex, or spanning tree, at once.

We first define the intersection graph (Section 2), and enumerate triangulations
as maximal independent sets of this graph (Section 3). We discuss further two basic
operations used in the enumeration: the enumeration of maximal dimensional sim-
plices (Section 4) and testing whether two simplices are intersecting improperly or not
(Section 5). We also show the enumeration for products of two simplices in which case

parts of the algorithm can be made faster (Section 6).

1.2 Triangulations as maximal independent sets

Let S = {p;,...,p,} C IR be a configuration of points, with their convex hull
conv(S) having full dimension d. We are interested in triangulations of conv(S). We
only consider triangulations whose vertices are among the given points S.

Two simplices o; and o; intersect properly if their intersection o;No; is a (possibly
empty) face for both simplices. This is equivalent to o;No; = conv(vert(o;)Nvert(o;)),
where vert(o;) and vert(c;) are the sets of vertices of o; and ¢;. Simplices intersect
improperly if they are not intersecting properly.

A set of d-simplices {07, ...,0,} whose vertices are among S is a triangulation of
S if (1) any pair of simplices o;, 0; are intersecting properly and (2) the union of the
simplices U {o1,...,0.,} is equal to conv(S). The whole set of d-simplices is denoted
by S.

We define the intersection graph as follows.



Definition 1.1 (intersection graph)

The intersection graph of S is the graph with S the vertices and edges between two

simplices intersecting improperly.
Several classes of sets of d-simplices are defined.

Definition 1.2
e T={I €2°: independent set of the intersection graph of S}
e M = {I € 25 : maximal independent set of the intersection graph of S}

e 7 ={I €2°: triangulation of S}

Trivially, M is a subclass of Z. Let I be a triangulation. The d-simplices in T
must not intersect improperly, so I is an independent set. Further, since we cannot
add anymore d-simplex to a triangulation without making improper intersection, I is

an maximal independent set. This gives the following proposition.

Proposition 1.3 ([9])

T is a subclass of M. An element I € M is in T if and only if the sum of the volume

of the d-simplices in I is equal to the volume of conv(S).

In next section we enumerate the triangulations 7 by giving an algorithm to enu-
merate the maximal independent sets M.

The difference of 7 and M becomes a loss. This kind of thing happens, for example,
for the point configuration given as the vertices of Schénhardt’s polyhedron (cf. [18,
10.2.1]). This polyhedron is a concave polyhedron made by twisting a little bit a
triangle of a prism. No tetrahedron with vertices among the six vertices is included
in this polyhedron. The set made by the three tetrahedra fitting the outer concave
part of this polyhedron becomes a maximal independent set of the convex polytope
of the six vertices. However, this is not a triangulation, because the inner part is left.
Whether this kind of thing happens or not depends on the point configuration, though

this dependence is not easy.

1.3 Enumeration of triangulations

As in the previous section, triangulations can be regarded as a subclass of the max-
imal independent sets of the intersection graph of d-simplices. Efficient algorithms
to enumerate maximal independent sets are known [13], [24]. We reformulate one of
these algorithms to our case, and propose a triangulation enumerating algorithm. This
algorithm handles arbitrary configurations of points.

The algorithm we use to enumerate maximal independent sets is from [13]. It is
called the generalized Paull-Unger procedure with improvements by Tsukiyama, Ide,
Ariyoshi and Shirakawa [24].



Let the base set be E = {1,...,n}, ¢ the independence testing time, and M the
set of maximal independent sets. Let us denote by M; the family of independent sets
that are maximal within {1,...,7}. In this algorithm, M; is computed using M;_;,
starting from My = {0}, to obtain M,, = M.

The update from M;_; to M; is done as follows. For each I in M;_,, the
independency of TU{j} is tested. If this is independent, IU{j} is added to M;. If not
independent, I and other maximal independent sets of M included in JU{j} become
candidates to be added. If I' is such maximal independent set of M; included in
Tu{j}, it should be maximal in I U {j}. This fact is used reversely: first the maximal
independent sets in TU{;j} are listed up, and then their maximal independence in M

is checked. The algorithm elaborates to produce I’ from a single I.

Algorithm 1.4 (enumeration of maximal independent sets [13])

Step 1. For each I € M;_y, find all independent sets I’ that are maximal within
IU {j}.

Step 2. For each such I, test I' for maximality within {1,...,5}. Each set I' that
is maximal within {1,...,j} is a member of M;, and each member of M; can be
found in this way. However a given I' € M; may be obtained from more than one
I € M;_;. In order to eliminate duplications we need one further step.

Step 3. For each I’ obtained from I € M;_; that is maximal within {1,...,;}, test
for each i < j, i ¢ I, the set (I'\ {7fH U N{L,...,5 —1}) U {i} for independence.
Reject I' if any of these tests yields an affirmative answer. (This step retains I' only

if it is obtained from the lexicographically smallest I € M;_;.)

This computation performs a search on a tree. The tree is rooted by the @), and
nodes at level j correspond to members of M. For each I in M;_,, the corresponding
I' (possibly several) in M; become its children. The maximal independent sets, the
leaves of the tree, are enumerated by depth first search, and the path from the root

to the current I needs to be memorized.

Theorem 1.5 ([13])

Algorithm 1.4 enumerates all maximal independent sets in O(nc'K + n?cKK') time
and O(nK') memory. Here K = #M and we suppose that in Step 1, for each

I € M;_q, at most K' sets I' are found in ¢’ time.

Next, we reformulate the algorithm above for enumeration of maximal indepen-
dent sets of an simple undirected graph. Our aim was to enumerate the maximal
independent sets of the intersection graph of d-simplices.

The base set E is the set of vertices of the graph. We suppose the existence of an
oracle which answers in unit time the previous or next vertex for a given vertex for
some fixed order of vertices. This seems trivial when we write E = {1,...,n}, but it is
not for our case, because the vertices correspond to the d-simplices S. The existence

of such oracle is discussed in Section 1.4.



Let m = maxjep #1 be the maximum cardinality of vertices in a maximal inde-
pendent set. We say that two vertices are intersecting if they are connected by an
edge, and denote by time(intersect) the time needed to judge whether two vertices are
intersecting or not.

The time complexity of Theorem 1.5 is given by ¢ and ¢’. The time for an inde-
pendence test was ¢. For any set I C E, this test can be done by checking if any pair
of vertices in I are connected by an edge. If such pair exists, I is dependent, and if
not, independent. This takes (#1)? time(intersect) time, m? - time(intersect) at most,
which corresponds to ¢ in Theorem 1.5. However, by the following realization it can

be done in m - time(intersect) time.

Algorithm 1.6 (enumeration of maximal independent sets of graphs)

We reformulate Algorithm 1.4 as follows.
Step 1. For each I in M;_; we want to find the candidates I'. For this, we only
have to check the intersection of the newly added vertex j with the no more than m
current ones in I.
(1) If j does not intersect with any of the verticesin I, TU{j} is the only maximal
independent set in I U {j}. Further, this is maximal independent in {1,...,j}.

So, the test in Step 2 is not necessary for this case.

(2) If j intersects with some of the vertices in I, I and the set {i € TU {j} :
not intersecting with j} are the maximal independent sets of I U {j}. Further,
I is maximal independent in {1,...,5}, so the test in Step 2 is unnecessary for
this. For {i € U {j} : not intersecting with j}, we need the test.
Step 2. We have to check the maximality of I’ in {1,...,5}. As mentioned above, the
only case we have to check is the second candidate in case (2) of Step 1. We check
whether some ¢ € {1,...,j}\ I' is not intersecting with all the vertices in I'. If such ¢
exists, I’ is not maximal independent, and if not, it is maximal independent.
Step 3. It is checked whether I' is obtained from the lexicographically smallest
I € M;_,. This is always true for case (1) and the first candidate in case (2) of Step
1. So, we only have to check for the second candidate in case (2). For each I' we have
to check for each i < j, i ¢ I, the independence of (I'\ {j}) U(IN{1,...,i -1} U {i}.
Each of this independence test can be done by checking whether ¢ intersects with
some vertex in (I' \ {j}) U(I Nn{L,...,i —1}). If ¢ intersects with some vertex,
(I'\{jHhuIn{L,...,i—1})U{i} is not independent. If ¢ does not intersect with any
of the vertices, this set is independent. For this latter case, I' can be obtained from
another lexicographically smaller I, and I' is rejected. If this does not happen for any
i <j,i¢1I,I'is the child of I, and should be retained.

The time complexity is as follows.
In Step 1, ¢’ in Theorem 1.5 is computed in m - time(intersect) time. For each I in
M;_; the candidates I' we take are one or two, so K’ < 2. The total time complexity

for this step is O(nc K) = O(m time(intersect)n#.M).



In Step 2, each independence test can be done in ¢ = m - time(intersect) time, and
it takes m time(intersect)n time for each I'. The total time complexity for this step is
O(m time(intersect)n?#M).

In Step 3, the independence test can be done in ¢ = m - time(intersect) time. The
total time complexity for this step is O(m time(intersect)n?#.M).

The time complexity analyzed above is the total time needed for descending the
search tree. Since only 2m memory is allowed, we have to recompute the parent when
ascending the tree. However, this does not increase the order of time complexity.

Suppose we are at I’ € M4, and want to find its parent I € M;. If j+1¢ I', I’
is the first candidate for case (2) in Step 1, and I = I'. When j + 1 € I', we try to
add (last element of I\ {j + 1}) + 1,...,J in this order to obtain I. Remind that I
was lexicographically the smallest among the possible parents. If we have no element
to add, I' is the child for case (1) in Step 1, and if we have, I’ is the second candidate
for case (2) in Step 1.

The time complexity needed for a recomputation of I is m time(intersect)n and
O(m time(intersect)n?#.M) as a whole. Thus ascending the tree does not increase the
order of the time complexity.

To identify which node we are, the information of the current and previous inde-
pendent sets and the depth j is enough. This requires memory of size 2m. We do not
need to memorize the path from the root to the current node, which became the space
complexity O(nK') in Theorem 1.5. This saving of memory was implied in [13]. We
realize this as follows.

If we are descending the search tree, the next thing to do is to compute the can-
didates I' and descend the tree. For case (1), we descend to the only candidate
I' = TU{j}. For case (2), let us descend first to the candidate I' = I. We will try
the second candidate {i € I U {j} : not intersecting with j}, if it is a child, when we
come back to this node ascending from I € M;.

When we are ascending the tree, there are three possibilities. We came from the
only child for case (1), the first or the second for case (2). This was the information
of the path from the root, which took O(nK'). We can dispense with this as shown
above in the analysis ascending the tree.

Since we have the oracle mentioned above, we do not have to memorize all vertices.
Thus, we can traverse the search tree only with the information of our current and

previous independent sets and the depth j.

Theorem 1.7
Algorithm 1.6 enumerates all maximal independent sets of a simple undirected graph.

This works in O(m time(intersect)n?#.M) time with memory size 2m.

The computation of this enumeration can be divided into smaller problems, and

performed in parallel. This can be done by enumerating all nodes of depth not larger



than j, which are M;, the maximal independent sets of {1,...,j}, and performing
searches for each subtrees with roots I € M;.

Now we apply our formulation above towards the enumeration of triangulations.
The base set E is the set of d-simplices S. We supposed the existence of an oracle which
answers in unit time the previous or next simplex for a given simplex for some fixed
order of E. The existence of such oracle is discussed in Section 1.4. The number m =
maxyeaq #1 is the maximum cardinality of simplices in a maximal independent set,
and time(intersect) is the time needed to judge whether two simplices are intersecting

properly or not.

Theorem 1.8 (enumeration of triangulations)

Using Algorithm 1.6, we can enumerate all maximal independent sets, thus the triangu-
lations, of the intersection graph of S. This works in O(m time(intersect)(#8)2#.M)

time with memory size 2m.

The number of simplices in a triangulation is bounded by m. If m, the largest
cardinality of (maximal) independent sets, and the largest cardinality of a triangu-
lation is the same, we can say that the required memory is only twice the size of a

triangulation.

1.4 Enumerating d-simplices

We supposed the existence of an oracle which answers in unit time the previous or
next d-simplex for a given d-simplex for some fixed order of the d-simplices S.

The given point configuration was S = {p;,...,p,}. A set of d + 1 points
{Pi,,---:Pi,,, } becomes the set of vertices for a d-simplex if and only if (plil) yeens

(p ic11+1) are linearly independent.

Thus the problem reduces to the existence of a similar oracle for the bases of
{(P+),...,(P»)}. This can be realized by reverse search with the time complexity
O((d + 1)n#S8) for the whole enumeration [2].

Using this oracle, we do not need to memorize all of the d-simplices, thus memory
for only several times the size of a simplex would be enough. This enables handling of
large size problems. For such large size problems that even the memory for simplices
matters, the enumeration of all triangulations may be hopeless, since it may require
enormous time. However, since the algorithm does work, we can generate several
triangulations among the whole.

For smaller problems for which we can memorize all of the d-simplices, it is better
to enumerate and memorize them. This will be much faster than asking the oracle each
time. The enumeration here can be done also by reverse search. Though practically,
trying all d + 1 points among S and checking if it is a d-simplex by calculating the

determinant of the corresponding d + 1 vectors is fast enough.



1.5 Testing the intersection of d-simplices

Computing whether two simplices are intersecting improperly or not is usually the
most time consuming calculation. The time complexity in Theorem 1.8 was evaluated
by the number of this calculation. Here, we give algorithms and their complexity for

this calculation. (A matrix will be regarded as a set of column vectors.)

Algorithm 1.9 (testing the intersection of d-simplices)

Input: {ai,...,aqs1}, {b1,...,bgs1} : vertices of d-simplices in IR?

Output: whether the simplices are intersecting improperly or not

Suppose {a1,...,aq+1}N{b1,...,bst1} = 0. First, by affine transformation, we move
(by---bgt1) to (0 €1 ---e4), where e; are the unit vectors. The points (a; - - agy1)
move to (by — by --- bgr1 — b)) 1(a; — by -+ agy1 — by). Let C denote this ma-
trix. The convex hull of these points has a point common with the convex hull
conv{0 ,ey,...,eq} if and only if these simplices are intersecting improperly. This

is equivalent to whether the linear programming

C 0
1---1
T >
-1---—-1 -1
- Ci. -1
x>0

under some cost vector has a feasible solution or not. When {a1,...,aqs41} and
{b1,...,bgy1} have points in common, the testing reduces to smaller linear program-

mings, after neglecting by projection the dimensions spanned by the points in common.

Lemma 1.10

Algorithm 1.9 works in time LP(d + 1,d + 3), where LP(n,m) is the time required to

solve a linear programming problem with m constraints and n variables.

If it is possible to memorize whether the simplices are intersecting properly or
improperly for all pairs of simplices, it is better to compute first all the intersec-
tions and memorize them. This requires memory of (%°) bits. It can be done in
time(intersect) - (%°) time. Since this computation is just to test intersection for (*)
pairs, it can obviously be divided and computed in parallel. By this preprocess we can
remove away the factor time(intersect) of M of the time complexity in Theorem 1.8
to O(time(intersect)(#S)2 + m(#S)2#M).

1.6 Ap X A

We are interested in enumerating the triangulations for products of two simplices. We

take as the standard d-simplex A4 the convex hull conv{e,...,eqs1} in R4, We



write e; or f; for unit vectors with i-th or j-th element one and the rest zeros. The

product of two standard simplices Ay x 4 is

AkxAl:conv{< ) e]Rk““:ie{l,...,k+1},je{1,...,l+1}}.

e
f;

In Figure 1.1 we show A; X A; and Ay x A; for example.

A.XA
A, Al 1% 8
e e
f 1 2
e 1 fl fl
1 )
e
f fl fe2
2 2 2
AZXAl o
A, A 2

Figure 1.1: Product of simplices: A; x Ay and Ay x Ay

We want to enumerate the triangulations for the point configuration S = vert(Ay x
A;), where vert(Ag x A;) are the vertices. Examples of triangulations are shown in
Figure 1.2.

First we state several lemmas for later use. The volume of (k + [)-simplices in a
triangulation of Ay x A; is constant. Under scaling, they have volume 1/(k +1)!, and

the product has volume 1/k!l!. This leads the following.
Lemma 1.11
The number of (k + !)-simplices included in a triangulation of Ay x A; is (k+1)!/k!1!.

The (k + 1)-simplices in Ay x A; correspond to the spanning trees of the complete

bipartite graph K1 +1 [7, 7.3.D.]. This derives the next.

Lemma 1.12
The number of (k + [)-simplices of Ay x Ay is (k + 1)!(1 + 1)*.

The generation of spanning trees of K141 can be done using a constant time
per tree with small memory [10] [20]. Thus we can generate the corresponding (k +1)-
simplices similarly.

Lemma 1.13 (enumerating d-simplices: the A, X A, case)

We can generate the (k + [)-simplices of Ay X A; using a constant time per simplex

with small memory. Thus, the oracle supposed for Algorithm 1.6 exists.
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Figure 1.2: Triangulations for A; x A; and Ay x Ay

For the point configuration of Ay x Ay, testing whether two simplices are intersect-
ing improperly or not can be reduced to judging the existence of a cycle in a subgraph
of a directed Kgi1,44+1 [5, Lemma 2.3.], which leads the time complexity. The inter-
section test for this Ay x A; case can be computed faster using this graph property
compared to Algorithm 1.9.

Lemma 1.14 (testing the intersection of d-simplices: the Ay X A; case)

Given two (k+1)-simplices in A x Ay, judging whether they are intersecting improperly

or not can be done in O(k + 1) time.

1.6.1 Enumerating triangulations for A; X A,

We apply Theorem 1.8 to the case of Ay x A,.

Theorem 1.15

For the point configuration S = vert(Ag x 4;), Algorithm 1.6 enumerates all maximal
independent sets of the intersection graph of S, thus the triangulations, in O( (k kH) (k+

DEZI2k# M) time with memory size 2m.

Proof. By Lemma 1.13, the oracle exists. By Lemma 1.11, and the consideration

of the volume of (k + [)-simplices above it, maximal independent sets have cardinality

10



at most m = (*#'). By Lemma 1.12, #S = (k + 1)/(l + 1)*. By Lemma 1.14,
time(intersect) = O(k +[). O

1.7 Future works

1.7.1 Enumeration of classes of triangulations

Applying this method to enumerate the classes of triangulations with respect to sym-
metry would be a future work. Suppose we defined two triangulations or maximal
independent sets to be equivalent when they can be regarded the same with respect
to the symmetry of the given point configuration. We want to enumerate the classes
of maximal independent sets with respect to this symmetry. The problem becomes to
enumerate the equivalence classes of maximal independent sets of graphs. However,

this seems to be difficult.

11



Chapter 2

Enumeration of classes of regular

triangulations

We propose an algorithm to enumerate classes of objects by reverse search. We apply
this to the enumeration of classes of regular triangulations in respect of symmetry
for symmetric polytopes. Application to products of two simplices and hypercubes
are shown. There are many results for triangulations in two dimension, but little is
known for higher dimensions. The objects we enumerate in this paper are for general
dimensions.

Products of two simplices and hypercubes are polytopes rather simple, but their
triangulations are not yet well understood. Since these polytopes are highly sym-
metric, counting all triangulations naively is inefficient: we may count the “same”
triangulation many times. Our algorithm enumerates the classes of regular triangula-
tions, a subset of triangulations, with respect to the symmetry. We use reverse search
technique, utilizing the symmetric structure of the polytope. This enables time com-
plexity linear to the number of these classes, and space complexity of the size of several

triangulations.

2.1 Introduction

Gel’fand, Kapranov and Zelevinsky introduced the secondary polytope for point con-
figurations in general dimensional space, and showed that its vertices correspond to
regular triangulations [7], [8]. Using this property, regular triangulations can be enu-
merated by enumerating the vertices of that polytope. Billera, Filliman and Sturmfels
studied the structure of this secondary polytope with relation to volume vectors, and
analyzed the complexity computing the polytope [3].

Regular triangulations of the product of two simplices Ay x A;, where k& and
l are their dimensions, have relations with other branches of mathematics, such as
Grobner bases [21], [22]. This polytope is highly symmetric: it has the symmetry
of the direct product of two symmetric groups Sg4+1 X Si+1. So, it is not smart to

count all triangulations naively, because we may count the “same” one (k+ 1)! (I +1)!
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times. De Loera devised a program to enumerate regular triangulations for given sets
of points. The program can take this symmetry into account, and he enumerated the
triangulations, all of which are regular, for the case of Ay x Az and As x Ay [4], [5].
When the dimensions become larger, even the number of classes divided by symmetry
becomes huge. De Loera is using breadth first search in his program, so all visited
triangulations should be kept in the memory, and the memory constraint becomes
serious in larger cases.

Masada, Imai and Imai proposed an algorithm to enumerate regular triangulations
with output-size sensitive time complexity, which is same as de Loera’s, using the
memory only of the size for two triangulations [16], [17]. It uses a general technique
for enumeration which is called reverse search, by Avis and Fukuda [1], [2].

We first propose an algorithm to enumerate classes of objects by reverse search.
And then apply this to the enumeration of classes of regular triangulations in respect
of symmetry for symmetric polytopes. Applications to products of two simplices and
hypercubes are shown. As mentioned above, for these highly symmetric polytopes,
it is important to enumerate the classes of triangulations. Using reverse search, we
imaginary make a tree with the classes the vertices, and enumerate those vertices
traversing the tree only by using local information. The algorithm runs in output-
sensitive time, i.e. in time proportional to the number of classes, and requires memory
only several times of a triangulation.

We begin by a brief explanation of reverse search (Section 2). Next we give our
formulation of reverse search for classes of objects (Section 3). We introduce results
on regular triangulations (Section 4) and their enumeration (Section 5). Then we
present our algorithm for enumeration of classes of regular triangulations (Section
6). Applications to products of simplices (Section 7) and hypercubes (Section 8) are

shown.

2.2 Reverse search

Reverse search is a general technique for enumeration. It performs at the same output-
size sensitive time as breadth first search (BFS) or depth first search (DFS), but
requires memory only for twice the size of an object among those we want to enumerate.
BFS and DFS needed output-size sensitive memory to memorize all reached objects.
To save memory, in addition to the adjacency relation, which is necessary for BFS and
DFS, parent-children relation is needful for reverse search [1], [2].

First we state the adjacency and parent-children relation for reverse search. This
structure for reverse search is named “local search structure given by an A-oracle.”

We call it a reverse search structure here.
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Definition 2.1 (reverse search structure [2])

(S,0,Adj, f) is a reverse search structure if it suffices the followings. (1) S is a finite
set. (2) 6 € IN. (3) Adj: Sx{l,...,6} - SU{P}. Foranya € S andi,j € {1,...,0},
(i) Adj(a,i) # a and (ii) if Adj(a,?) = Adj(a,j) # O theni =35 (4) f: S — Sis
the parent function: f(a) = a or Adj(a,t) for some i. (5) There exists a unique root
object r € S: an object such that f(r) = r. For any other object a # r, there exists
n € IN such that f(™(a) = 7.

S is the set of objects to enumerate. The maximum degree of the adjacency graph
is 6. For each object a € S the adjacency function Adj returns its indexed adjacent
object, or sometimes § if the object has degree less than §. This index is for use in the
enumeration algorithm. We always assume that the adjacency relation is symmetric:
if Adj(a,i) = b then Adj(b,j) = a for some j.

The information of §, Adj, f and r is given to the reverse search algorithm, and
the algorithm returns S as its output. Actually we do not need r, because we can find

it by applying f several times to an object.

Algorithm 2.2 (reverse search [2])
ReverseSearch(d, Adj, f,r)

vi=r j:=0
repeat
while j<§ do
ji=j+1 mnest=Adj(v,7)
if next#0 then
if f(next) =v then
{v:=next j:=0}
if v#r then
u:=v v:= f(v)
j:=0
repeat j:=j+1
until Adj(v,j) =u

until v=7r and j=9§

Theorem 2.3 ([2, Corollary 2.3.])

Algorithm 2.2 works for the reverse search structure in Definition 2.1. The time
complexity is O(6 (time(Adj) + time(f)) #S), where time(Adj) and time(f) are the
time necessary to compute functions Adj and f. The memory required is twice the

size of an object in S.
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2.3 Reverse search for classes

Later, we will show an algorithm to enumerate classes of regular triangulations. This
will be based on the enumeration of classes of objects by reverse search we propose in
this section.

We use ~ for an equivalence relation on the objects S. The equivalence class of
an object a is denoted by [a]. By rep we denote the representative function: for any
object a, rep(a) ~ a, and for any objects a, b, a ~ b if and only if rep(a) = rep(b).
The composition (rep of)(a) denotes rep(f(a)).

Definition 2.4 (reverse search structure for classes)

(S,d,Adj, f,~,rep) is a reverse search structure for classes if

e (S,0,Adj, f) is a reverse search structure.

e ~ is an equivalence relation and rep is a representative function on S.

e a adjacent to b and ¢ ~ a implies the existence of an object d adjacent to ¢ and
d ~ b, for any a, b and c.

e The root object r of the original reverse search structure is the only object

with (repof)(r) = r. For any other object a # r, there exists n € IN such that
(repof)™(a) = 1.

Theorem 2.5

For the reverse search structure for classes in Definition 2.4, we can enumerate the
classes of objects by the following reverse search structure. The functions Adj and f

in the right hand are those of the original reverse search structure as in Definition 2.1.

e S/~={[a]: a € S} is the set we want to enumerate

e § is the same as the original reverse search structure
[Adj(rep(a),i)] if [Adj(rep(a),i)] # [rep(a)] and
o Adj([a],i) = if [Adj(rep(a),i)] # [Adj(rep(a),;)] for any
Jj<i
0 otherwise

e f([a]) = [f(rep(a))]

The time complexity is O(4(d(time(Adj)+time(rep))+time(f))#(S/~)) where time(rep)
is the time to compute the representative object of the class of an given object, and
time(Adj) and time(f) is the time for the original reverse search structure. The mem-

ory required is é + 2 times the size of an object.

Proof. We have to check conditions (1) to (5) of Definition 2.1 and the symmetry
of the adjacency relation.

Symmetry of the adjacency: if Adj([rep(a)],i) = [rep(d)], Adj(rep(a),i) = ¢ for some
¢ ~ rep(b), and [rep(a)] # [c]. By rep(a) adjacent to ¢ and ¢ ~ rep(b), there exists
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d ~ rep(a) adjacent to rep(b). Thus Adj(rep(d),j) = d for some j, and [rep(d)] = [¢] #
[rep(a)] = [d]. This implies Adj([rep(d)], k) = [d] = [rep(a)] for some k.
(1), (2) and (3) are satisfied by definition.
(4): if f([a]) = [b] and [a] # [b], f(rep(a)) ~ b # a. Thus f(rep(a)) # rep(a). Since
f(rep(a)) # rep(a), Adj(rep(a),i) = f(rep(a)) for some i. Thus Adj([rep(a)],j) =
[f(rep(a))] for some j. This leads Adj([a], 7) = [b]-
First statement of condition (5): the only class [a] with f([a]) = [a] is the class which
includes the original root object r. Since r = rep(f(r)), r is the representative of its
class [r]. For this class f([r]) = [f(r)] = [r]- If [a] is a class where f([a]) = [a], we have
[f(rep(a))] = [a], thus rep(f(rep(a))) = rep(a), which implies r = rep(a) € [a].
Second statement of condition (5): for any class [a] # [r], rep(a) # 7, and there exists
n € IN such that (rep of)™ (rep(a)) = r. Thus, ™ ([a]) = [r].

The argument above shows that the structure above is a reverse search structure,
S0 we can enumerate the classes by Algorithm 2.2 as shown in Theorem 2.3.

The adjacency function avoids self and multiple adjacency. The time complexity
becomes §(time(Adj) + time(rep)). The memory required is § times the size of an
object.

The parent function works with time complexity time(f) + time(rep). O

Two classes are adjacent if and only if there are adjacent objects from each of them.
Any object of a class has an adjacent object in all the class-wise adjacent classes. Thus
the degree of adjacency for the reverse search of classes is not larger than the degree
for the original reverse search, and we can use the same d.

The following is a special case of reverse search, given by an adjacency function
and a total order on the objects S.

Definition 2.6 (reverse search structure with total order)

(S,0,Adj, <) is a reverse search structure with total order if

e (S,6,Adj) satisfies the conditions (1) to (3) in Definition 2.1.
e < is a total order on S.

e Only the maximum element r of the total order satisfies max.({a € S : a =
Adj(r,3) for some i} U {r}) =r.

Proposition 2.7
A reverse search structure with total order (5,4, Adj, <) together with
o f(a) =max.({b €S :b=Adj(a,i) for some i} U {a})

becomes a reverse search structure.

Proof. We have to check the conditions (4) and (5) of Definition 2.1. By the defini-
tion of f, (4) is satisfied. The condition f(a) = a holds if and only if a = r. For other
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objects, f(a) > a, thus there exists some n € IN such that f(™)(a) = r. This shows

(5). The maximum object r becomes the root. O
We introduce a reverse search structure for classes for this version.

Definition 2.8 (reverse search structure for classes with total order)

(S,6,Adj, <,~) is a reverse search structure for classes with total order if

e (S,0,Adj, <) is a reverse search structure with total order
e ~ is an equivalence relation on S.

e a adjacent to b and ¢ ~ a implies the existence of an object d adjacent to ¢ and

d ~ b, for any a, b and c.

Proposition 2.9

The reverse search structure for classes with total order together with
o f(a) =max.({be S:b= Adj(a,q) for some i} U {a})
e rep(a) = max([a])

becomes a reverse search structure for classes.

Proof. We have to check the last condition of Definition 2.4. For any a, f(a) > a,
and f(a) = a if and only if @ = r. For any a, rep(a) > a. And also rep(r) = r. Thus
the root object r is the only object satisfying (repof)(r) = r. For any other object
a#r, (repof)(a) > a, and there exists n € IN such that (repof)(™(a) =r. O

2.4 Regular triangulations and the secondary poly-
tope

Regular triangulations form a subset of triangulations. They correspond to the vertices
of a polytope, secondary polytope, which is determined uniquely by a configuration of
points. Thanks to this property, regular triangulations can be enumerated by applying
a vertex enumeration method to the secondary polytope. Refer to [3], [7], [8], [14] and
[26] for further information on regular triangulations.

Let A = {a1,...,a,} C IR* be a configuration of points, with their convex hull
conv(A) having dimension d. We are interested in triangulations of conv(.4). We only
consider triangulations whose vertices are among the given points .A.

Two simplices o; and o; intersect properly if their intersection o;No; is a (possibly
empty) face for both simplices. This is equivalent to o;No; = conv(vert(o;)Nvert(o;)),
where vert(o;) and vert(o;) are the sets of vertices of o; and o;.

A set of d-simplices {01, ...,0,} whose vertices are among A is a triangulation of
A if (1) any pair of simplices o;, 0; are intersecting properly and (2) the union of the

simplices U{0o1,...,0,} is equal to conv(A).
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A triangulation T of A is regular if there exists a vector ¢ : A — IR having

the following property. For P = conv { (le) e (:Z" ) }, and 7 the projection 7 :
R*! — R* with 7 (zil) =z, T = {n(F) : F is a lower facet of P}. Here F being

a lower facet means, F' = {x € P : cx = ¢o} is a facet with cx < ¢ valid for P and
cq+1 < 0.

Let T be a triangulation of A. The volume vector for T is a vector o7 : A - R
with o1(w) = 32,7 wevert(o) VO1(0), Where vol(c) is the volume and vert(o) is the set
of vertices of a d-simplex o.

The secondary polytope X(.A) of a point configuration A is the convex hull of the
points @7 in R for all triangulations T' of A.

Regular triangulations correspond to the vertices of the secondary polytope X(.A).
The vertices connected by an edge in the secondary polytope are “similar”: they can
be modified each other by “flips”. For the definition of flips, consult the references

above.

Theorem 2.10 ([7, Chapter 7. Theorem 1.7., Theorem 2.10.])

The secondary polytope ¥(A) has dimension n — d — 1, and its vertices correspond
one-to-one to the volume vectors of the regular triangulations of A. The edges are
between vertices whose corresponding regular triangulations can be transformed each

other by a flip.

2.5 Enumerating regular triangulations by reverse

search

Regular triangulations can be enumerated by reverse search [17]. We restate this
result in the context of reverse search structure with total order, which we defined in
Definition 2.6 and Theorem 2.7.

Two triangulations are defined to be adjacent if they can be modified along a

circuit.
Definition 2.11 ([17])
The reverse search structure for regular triangulations of an arbitrary point configu-
ration A is
e S = {regular triangulation}

e Adj(T,i) = (the i-th regular triangulation which can be modified from T along
a circuit)

Adj(T,4) if the largest regular triangulation Adj(T,7) among those

o /(T)= adjacent to T is larger than 7', in respect of lexicographic

order of volume vectors
T otherwise
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The index 7 in the definition of Adj(T),%) is not of importance.

Definition 2.12 (total order on regular triangulations)

We introduce a total order on regular triangulations by comparing their volume vectors

in lexicographic order.

Since regular triangulations correspond to the vertices of the secondary polytope
¥ (A), and lexicographic order is same as ordering the vertices by the inner product
with a vector (N, N*~! ... N) with sufficiently large N, last condition in Definition
2.6 is satisfied. Thus, the reverse search structure and the total order above satisfy

the conditions of reverse search structure with total order.

Theorem 2.13 ([17])

The structure of Definition 2.11 enables reverse search. The time complexity is O((d +
1)sLP(n —d —1,(d + 1)s)#R), where s is the upper bound of number of simplices
contained in a regular triangulation and LP(n,m) is the time required to solve a linear
programming problem with m strict inequalities constraints in n variables, and R is
the set of regular triangulations. The memory required is several times the size of a

triangulation.

2.6 Enumerating classes of regular triangulations

We define symmetries of point configurations by groups. A point configuration may
be the set of vertices of a symmetric polytope, and the group a set of transformations
which do not change the polytope as a set.

Let G be some group of affine maps which define bijections on conv(.4). These maps
define bijections on the points 4. A bijection on conv(A) can be determined by its
action on 4. So we can regard G as a subgroup of the symmetric group S, consisting
of elements satisfying the conditions of affine bijectivity. We define an equivalence

relation using this group.

Definition 2.14 (equivalence on simplices and triangulations)

Let g € G.

o Gactson A= {ai,...,an}.

e The action of G on a simplex of A is induced by the action on its vertices:
geonv{a;,,...,a; } =conv{ga;,...,g9a;, }.

e The action of G on the triangulations of 4 is induced by the action on the
simplices: ¢T = {90 : 0 € T'}.

e The action of G on the vertices, simplices or triangulations defines an equiva-
lence relation on each of them: two elements are equivalent if they can move to

each other by an element of G. We classify these sets by this equivalence classes.
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Since G is a set of affine bijections, it maps a simplex to a simplex, and a triangula-
tion to a triangulation. Since affine bijections only relabel the name of the vertices, for
any g € G two triangulations 77 and 75 can be modified along a circuit if and only if
gT1 and ¢gT5 can. Thus, the definition of equivalence class on (regular) triangulations
satisfy the last condition of Definition 2.8, this becomes a reverse search structure for

classes with order. Theorem 2.5 leads the following.

Theorem 2.15 (enumerating classes of regular triangulations)

By reverse search structure, total order and equivalence relation defined in Definition
2.11, 2.12 and 2.14, we can enumerate the classes of regular triangulations in respect
of symmetry. The time complexity and required memory are as in Theorem 2.5. Time
complexities for time(Adj) and time(f) are same as the case of Theorem 2.13 and

time(rep) in general is as in Lemma 2.16.

Lemma 2.16
The representative of a class is the maximum element. Its time complexity time(rep)

is O(n#G).

Proof. Judging the order between two volume vectors can be done in n time. By

checking all actions of GG, we can obtain the above time complexity. O

2.7 Products of two simplices

2.7.1 Ap X A

We are interested in enumerating the triangulations for products of two simplices. We
take as the standard d-simplex A4 the convex hull conv{e,...,eqs1} in R4, We
write e; or f; for unit vectors with i-th or j-th element one and the rest zeros. The
product of two standard simplices Ay x A; is

€

f;

In Figure 2.1 we show A; x A; and Ay x A; for example.

AkxAl:conv{< ) e]Rk+’+2:ie{1,...,k+1},je{1,...,l+1}}.

Our objects to enumerate are the triangulations of A = vert(Ay x 4A;), where

vert(Ay X A;) are the vertices. Examples of triangulations are shown in Figure 2.2.

2.7.2 The symmetry of A, X A,

The product Ag x A; has a symmetric structure: even if we commute the axes of each

simplex, the shape of the product does not change.
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Figure 2.1: Product of simplices: A; x Ay and Ay x Ay

Definition 2.17

We formulate the symmetry of Ag x A; by the action of the direct product of symmetric

groups Sk41 X Sp41 to the vertices. An element (g, h) € Sgy1 X Si41 acts on the vertices
e\ _ [ €44
of Ap x Ay as (g, h) (fj) - <f )

h(3)

This action consists of affine maps defining bijections on Ay x A; and vert(Ay X
A;). Thus it suffices the conditions for the group. Actions and equivalence relations
on simplices and triangulations are induced as in Definition 2.14. For example, the
triangulations 77 and T in Fig.2.2 moves to each other by ((1,2),e) € Ss X S». So does
T3 and Ty by ((1,3),e) € S3 x Ss. As shown in Theorem 2.15, this equivalence relation
satisfies the last condition of reverse search structure for classes with symmetry, and
we can enumerate the classes of regular triangulations in respect of symmetry.

When k =1, there are further symmetry: commuting the first half of axes and the
last half. This can be formulated as an action of S; x S; x So. We can also consider

this action by modifying the arguments on complexity shown below.

2.7.3 Computing the representative

The volume vectors can be regarded as matrices: (o1 (; ))” € R¥ x R, Those
i

corresponding to the triangulations in Fig.2.2 are
2 2 1 3
YT = P, = Prs = 31 YTy = 31
1 3 2 2

Sk+1 X Si41 acts on a volume vector ¢ as rearrangements of rows and columns of a

matrix. Two regular triangulations T and 7" are in the same class if and only if their
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Figure 2.2: Triangulations for A; x A; and Ay x Ay

volume vectors ¢ and @7 are in the same class, since the correspondence between
regular triangulations and volume vectors was one-to-one (cf. Theorem 2.10).

We introduced a total order on the regular triangulation by lexicographic order of
their corresponding volume vectors (Definition 2.12). For the case of Ay x A;, we can
regard this order as lexicographic order on matrices: a matrix (a;;) is smaller than
(bi;) if for some (49, jo), Gigj, < Diyjy, and for any (7, j) such that i < ig or such that
it =1p and j < jo, a;; = by;.

As the representative of a class of regular triangulations we took the maximum

one. In Fig.2.2, T becomes the representative of the class {T1,T}.

Lemma 2.18

Given a regular triangulation T', the time time(rep) to compute the representative

element of its class is O(I! k%12).

Proof. In order to choose the representative triangulation from the class of a given
regular triangulation, we look for an element of Sky; X S;41 whose corresponding
rearrangement maximizes the matrix of the volume vector 7. We check all of the
(I + 1)! arrangements of columns. For each of them, the maximum can be obtained
by sorting the rows. There are k + 1 rows of length [ + 1. Comparing two numbers in

unit time, a comparison between two rows takes [ + 1 time. So we can sort the rows in
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O((k+1)2(1+1)) time. Hence the whole time complexity is O((I+1)! (k+1)?(I+1)) =
O@k212). O

This is faster than the time complexity for the general case in Lemma 2.16.

2.7.4 Enumerating classes of regular triangulations

Proposition 2.19

The enumeration algorithm for classes of regular triangulations in Theorem 2.15, works
for the case of Ay xA;. The time complexity is linear to the number of classes of regular

triangulations, and the memory required is several times the size of a triangulation.

Proof. The time to compute the representative element time(rep) is O(I! k?1?) by
Lemma 2.18. The I! here appears in the whole time complexity, but since we are just
finding the maximum arrangement of a small matrix (remind the instances we have to
solve are for k,l = 3 or 4), practically this is not time consuming compared to solving

LPs for each elements in a class. O

2.8 Hypercubes

2.8.1 Cy4

We are interested in enumerating the triangulations for hypercubes. We write e; for

unit vectors with the ¢-th element one and the rest zeros. The d-cube Cj is given by

€;,
Cq = conv : eR* :iy,... 0q € {1,2}
€,

Our objects to enumerate are the triangulations of A = vert(Cy).

2.8.2 The symmetry of Cy
We define the symmetry of Cy; as follows.

Definition 2.20

We formulate the symmetry of Cy by an action of the direct product of d+1 symmetric
groups Sz X - - - X Sg X Sy to the vertices. An element (g1,...,94,h) € SaX---X S XSy

€y €91(in(1))

acts on the vertices of Cy as (g1,---,94,h)

€i4 €94(in(a))
This action consists of affine maps defining bijections on Cy and vert(Cz). Thus it
suffices the conditions for the group. Actions and equivalence relations on simplices

and triangulations are induced as in Definition 2.14. As shown in Theorem 2.15, this
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equivalence relation satisfies the last condition of reverse search structure for classes
with symmetry, and we can enumerate the classes of regular triangulations in respect

of symmetry.

2.8.3 Enumerating classes of regular triangulations

Proposition 2.21

The enumeration algorithm for classes of regular triangulations in Theorem 2.15, works
for the case of Cy. The time complexity is linear to the number of classes of regular

triangulations, and the memory required is several times the size of a triangulation.
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Chapter 3

Polytopes of triangulations

We consider facets of independent set polytopes of intersection graphs of simplices. We
deal with two intersection graphs. The intersection graph of d-simplices and the graph
of (d — 1)-simplices for point configurations having dimension d. The independent set
polytopes are the convex hulls of the incidence vectors of the independent sets of these
graphs.

As a special case, we deal with points spanning the plane. We give a proof that an
inequality known to be useful in minimum weight triangulation is defining a facet of

the independent set polytope.

3.1 Introduction

We are given n points p,, ..., p,, whose convex hull has dimension d, and are interested
in their triangulations. All the simplices we consider should have vertices among the
given points.

Let us define two simplices to “intersect improperly” if their intersection as point
sets is not a face for at least one of them.

We want to consider two intersection graphs and their set of independent sets. The
intersection graph of d-simplices has the d-simplices as vertices. The intersecting graph
of (d — 1)-simplices has the (d — 1)-simplices as vertices. In both graphs, two vertices
are connected by an edge if their corresponding simplices are intersecting improperly.
An independent set of a graph was a subset of vertices with no edges among them.

The collection of independent sets for these two intersection graphs are set systems
with the base set the d-simplices or the (d — 1)-simplices. The incidence vectors of
independent sets become points with 0,1 elements in a space with dimension the size
of the base set. The convex hull of these incidence vectors becomes a full dimensional
0/1-polytope.

For any triangulation, the set of d-simplices (or (d—1)-simplices) is and independent
set in the intersection graph of d-simplices (or (d — 1)-simplices). Consider the convex

hull of the incidence vectors of these sets. For both the d and (d — 1)-dimensional
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case, this convex hull also is a 0/1-polytope and is a subset of the convex hull of all
the independent sets.

We are interested in the relation between these four polytopes. What kind of facets
do they have? What are their dimension? Are the convex hulls of triangulations a
face of the convex hulls of independent sets? If so, by what kind of inequalities are
their supporting hyperplane given? What kind of relation does the d and (d — 1)-
dimensional case have: what mappings are between them, how will an inequality of
the one be reflected to the other?

The case where the given points span a plane is of special interest. Here we
consider not only the convex hull of triangulations, but also the convex hull of spanning
triangulations. In this case, the number of triangles or edges in a triangulation becomes

constant by Euler’s formula.

3.2 The general case

3.2.1 Independent set polytope

We are given a simple undirected graph. Let V' be the set of vertices. An indepen-
dent set is a subset I C V with no edges among them. The incidence vector of an
independent set I is a vector in #V dimension space with entries one for dimensions
corresponding to the elements in I and zeros for others. The independent set polytope
of the given graph is the polytope made as the convex hull of these incidence vectors.
Let P denote this polytope.

The followings are well-known relation between the graph and its independent set
polytope.

We are considering simple graphs, so there are no self-loops.

Lemma 3.1

For any v; € V, {v;} is an independent set. The empty set is also an independent
set. Thus all of the unit vectors and the origin in IRY belong to P. Thus P has full

dimension.

Lemma 3.2 (nonnegative constraints)

For any v; € V, {v;} is an independent set. Let x; be the corresponding axis. The
inequality z; > 0 is valid for P and defines its facet.

Lemma 3.3

Let v; € V be an isolated vertex (i.e. no edge is adjacent), and z; the corresponding
axis. The independent set polytope P is equal to the product of a line segment [0, 1]

(in z;) and the projection of P to the hyperplane z; = 0 (in other dimensions).
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Lemma 3.4 (clique cut)

Let X C V be a clique (i.e. complete subgraph) in the given graph. Then the
inequality ), o x @; < 1is valid for P. It defines a facet of P if and only if the clique

X is maximal (in the sense of set inclusion).

Lemma 3.5 (odd-cycle cut)

Let X C V be the vertices of an odd-cycle of length 2k + 1 in the given graph. Then
the inequality Ev,-e x i < k is valid for P. It defines a facet of P if and only if no

point in V'\ X is adjacent to some vertex in any independent subset of X of size k.

The nonnegative constraints, clique cuts and odd-cycle cuts give faces or facets of
the independent set polytope. However, facets of other type exist. Giving descriptions
to facets of independent set polytopes is an important topic in Integer Programming
[19]. Let us observe what kind of shapes the inequalities, especially there facets, have.

Let a’x < b with @ € RY,b € R be a valid inequality defining a face of the
independent set polytope. For proper faces, @ # 0 . Since the empty set is an
independent set of the graph, 0 is a vertex of the polytope, so b > 0.

In case b = 0, a < 0. Because, for any v; € V, {v;} is an independent set,
and b; < 0 for the incidence vector of this set. These inequalities are implied by the
nonnegative constraints of the variables. The corresponding faces are subfaces of the
facets defined by these constraints.

In case b > 0, a > 0 for facets. The proof is as follows. Since a facet cannot be
empty, there should exist a positive component for a. Suppose a; < 0 for v; € V. Let
a' be a vector with the i-th component zero and other components same as a. The
inequality a@'Ta < b is valid, and the face it defines properly includes the face defined
by a’x < b. (It has higher dimension in the x; dimension.) This contradicts our
supposition that a’x < b was defining a facet.

And further, since {v;} is independent for any v; € V, a; < b.

As a whole, there are two types of facets. Those for b = 0 were the nonnegative
constraints z; > 0 for all v; € V. Those for b > 0 were a’x < bwitha >0 ,# 0 and
a; < b for any v; € V.

Facets are faces with dimension #V — 1. The following lemma gives information

on the dimension of faces. The support of a vector « is supp(x) = {i : ; # 0}.

Lemma 3.6

Let a”x < b witha > 0,# 0, b > 0 be an inequality defining a face of the in-
dependent set polytope. This inequality is valid for the independent set polytope in
IR*“PP(@) of the subgraph induced by vertices supp(a) C V. Let #supp(a) — di be
the dimension of the face this inequality defines here. The incidence vectors for some
independent sets of this subgraph may give an equality for this inequality. Let ds be

the number of vertices in V' \ supp(a) which is adjacent to some vertex for any of
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these independent sets. The face of the independent set polytope of the original graph
defined by this inequality has dimension #V — d; — ds.

So, we obtain a facet when d; = 1 and d» = 0.

3.2.2 Independent set system of d-simplices

Let C4 be the set of d-simplices with vertices among {p;,...,p,}- The intersection
graph of d-simplices has C; as vertices. Two vertices are connected by an edge if the
corresponding d-simplices are intersecting improperly. The independent set polytope
P, of this graph is the convex hull of the incidence vectors of the independent sets of
this graph. This is an 0/1-polytope in #C4 dimensional space.

Let v be a vector in this space with each element the volume of the corresponding
d-simplex. The inequality v’ < vol(conv{p,,...,p,}), where vol is the volume, is
valid for P;. The vertices of the face defined by this inequality are the incidence vectors
of d-simplices of the triangulations. This face is known as the universal polytope and
studied in [3] [6].

3.2.3 Independent set system of (d — 1)-simplices

Let C4—1 be the set of (d — 1)-simplices with vertices among {p,,...,p, }- The inter-
section graph of (d — 1)-simplices has C4—; as vertices. Two vertices are connected
by an edge if the corresponding (d — 1)-simplices are intersecting improperly. The
independent set polytope P;_; of this graph is the convex hull of the incidence vectors
of the independent sets of this graph. This is an 0/1-polytope in #C4_1 dimensional
space.

We define a (d — 1)-simplex o € C4—1 to be a boundary simplex if it is included in
the boundary of the convex hull of the given points conv{p,,...,p,}. Otherwise, it is

called an interior simplex. Lemma 3.3 leads the following.

Lemma 3.7

Let o € C4—1 be a boundary (d—1)-simplex. Let z, be the corresponding axis. Vertex
o is isolated in the intersection graph of (d — 1)-simplices. Thus P;_; is equal to the
product of a line segment [0,1] (in the axis z,) and the projection of P;_; (to the

other dimensions).

3.2.4 The relation between the d and d — 1 dimension case

The boundary of a d-simplex consists of d + 1 (d — 1)-simplices. We can define a map
from IR to IRC-? by taking the boundary for each simplex.

Take an arbitrary triangulation. For any boundary (d—1)-simplex, there are either
zero or one d-simplex having this (d — 1)-simplex in its boundary. For an interior
(d — 1)-simplex, there are either zero or two d-simplex having this (d — 1)-simplex in

its boundary.
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It seems appropriate to change the coefficients according to this difference, when

taking a linear map from R® to IR“~. We consider the linear map generated by

fles) = > e +1/2 > €w,

TEHo: boundary (d — 1)-simplex vEdo: interior (d — 1)-simplex

where 9o is the set of the facets of a d-simplex o and e, € IR®, e,,ev € IRC“-1 are
unit vectors.
Studying the relation between the polytope Py C IR and P;_; C IR~ is an

interesting subject.

3.3 Points spanning the plane

3.3.1 convex n-gon

We are given n points {p;,...,p, } spanning the plane. The dimension is d = 2.

We denote an edge with endpoints p;, p; by e;;, and the set of edges, or (d — 1)-
simplices, by E = {e;; : 1 <i < j < n}. Since there are n points, the number of edges
is #F = (3).

Two edges intersect improperly if their intersection as point set is not a face for at
least one of them. The intersection graph of edges is the graph with E the vertices and
edges between pairs of vertices whose corresponding edges are intersecting improperly.
A subset of E is independent if no pair of edges among this subset is intersecting
improperly. We denote the collection of independent sets by Z. This is an independent
set system with base set E. The independent set polytope P is the convex hull of the
incidence vectors of the independent sets Z.

We denote the collection of sets of edges of triangulations by 7. Clearly, 7 C 7.
The convex hull of the incidence vectors of 7 will be denoted by Py. Clearly, P+ C Ps.

The polytopes Py and Pr are in #E = () dimensional space. We denote the axis
corresponding to edge e;; by x;;.

Since the intersection graph of edges is a simple undirected graph, the properties

for the independent set polytope in Subsection 3.2.1 hold.

Lemma 3.8 (restatement of Lemma 3.1)

The empty set and the sets {e;;} for any e;; € E are independent. Thus, the

corresponding incidence vectors belong to Pz, and this polytope has full dimension

#E=(3)

Lemma 3.9 (restatement of Lemma 3.2)

For any e;; € E, x;; > 0 is a valid inequality for Pz, and defines its facet.

We defined two types of (d — 1)-simplices, the edges. The boundary edges are on
the boundary of the convex hull of {p,,...,p, }. The interior edges were the rest.
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Lemma 3.10 (restatement of Lemma 3.7)

For any boundary edge e;;, x;; < 1 is a valid inequality for Pz, and defines its facet.

Lemma 3.11

For any interior edge e;;, x;; < 1is a valid inequality for Pz, and defines its face. The

n

dimension of this face is (7

) — 1 — #{ew € E : e intersects improperly with e;;}.
Proof. Lemma 3.6. O

For boundary edges, e;; > 0 and e;; < 1 define facets of Pz. As in Lemma 3.7,
Pz is the product of a polytope in the space corresponding to the boundary edge axis
and a polytope in the space of the interior edges. The first component is a hypercube
defined by 0 < z;; < 1 for boundary edges e;;. The facet inequalities of Pz is exactly

the union of facet inequalities for these two components.

Proposition 3.12

Suppose {p;,,--.,p; } C S formed the vertices of a convex m-gon with vertices in
this order. Let E,, = {e;,;, € E : s —t # 0,£1(modm)} be the interior edges of
this m-gon. Let F' be the convex hull of the incidence vectors of the independent
sets including a set of interior edges of a triangulation of this m-gon. F' forms a face
of the independent set polytope Pz. Its inequality is Eeime B, Tiji, < m—3. The
face F becomes a facet if and only if no edge in E \ E,, intersects all sets of m — 3

non-intersecting edges in E,,.

Proof. For any triangulation of the convex m-gon, m — 3 edges in E,,, are used. For
any independent set of the whole intersection graph, at most m — 3 edges from E,,
can be used. So, the inequality Zeisit eE,, Tiyi, < m —3is valid on Pr. The equality
holds for independent sets including a set of interior edges of a triangulation of this
m-gon. Thus, F = Py N {x: D, €By Tisiy =M — 3}, and F is a face of Pr.

Let 7 be the set of m — 3 non-intersecting edges in E,,. In other words, this is
the set of interior edges of triangulations of the convex m-gon. Let U be the incidence
vectors of 7. We use the same indexing for U and T, for example u, € U corresponds
to T, € T. Clearly, the points in U lie on F. Let ¢ = (1/#U) )4, cpy u be the centroid
of U. This point is included in the convex hull of U, which is a subset of F'.

Suppose two edges e;,;,;€;,i, € En intersect. There exists a pair of triangulations
T,,Ty € T such that T, \ {e;,s, } U{ei, i, } = T, Let f; ;, denote the unit vector with
74,5, = 1 and other elements zero. In our situation, uqg —u, = f; ; — f; ;. Consider
moving c slightly along the orientation f; ; — f; ;: ¢+ (1/#U)(fis, — fii,) =
2/#U0)u, + ZT,eﬂ{Tp,Tq}(l/#U)ur' The right-hand side indicates that this point
is still in the convex hull of U.

For edges in E,,, the edge e;,;, intersects edges e;,;,. The edge e;,;, intersects edges
€igi, - Edges e,

i+, intersects edges e; ;- Thus any edge in E,, is an intersecting
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edge of an intersecting edge of ... an intersecting edge of the edge e;,;,. Hence, for
any edge e;,;, € Ep, moving c slightly along the orientation f,; ; — f; ;. leaves the
point inside the convex hull of U. This shows that the convex hull of U around ¢ has
dimension #E,, — 1 in the directions {f; ;, : €;;, € En}.

The face F' becomes a facet if and only if it has full dimension in the other directions,
which are {f;; : e;; € E'\ Ep}, We show that this happens if and only if no edge
in E\ E,, intersects all sets of m — 3 non-intersecting edges in E,,. Suppose no
such edge existed. Then, for any edge e;; € E \ Ey,, there exists a set of m — 3
non-intersecting edges in E,,. Let this be T, € 7. The incidence vector of T, was
up, € U, and points in U were on F. The point u, + f;; is also on F. Thus,
c+ (V/#U)fi; = Xreryr,(/#U)ur + (1/#U)(up + f;) is on F. This is the
point obtained by moving c slightly along f,;. Since the choice of e;; € E \ E,, was
arbitrary, and F' was convex, this is equivalent to F' around ¢ having full dimension
of {fij:eij € E\ Ep}. O

Corollary 3.13

Let S = {py,...,p,} be vertices of a convex n-gon. A face of the convex k-gon as in
the proposition above forms a facet if and only if the k& points are taken consecutively

from the n-gon.

This facet is known to be powerful for the minimum weight triangulation problem.

It was called geometric cut in [11] and convex polygon cut in [12].

Proposition 3.14

Let S = {p;,...,p,} be vertices of a convex n-gon. The inequalities ;; < 1 (ey;:

boundary) and ) x;j < n — 3 define facets of Pz, and

e;;:interior

Pr=PrnN ﬂ {.Z'ij:l}ﬂ{ Z 1'1']‘:”—3}.

e;j:boundary e;j:interior

The dimension of Pris (§) —n— 1.

Proof. The inequalities define facets by Lemma 3.10 and Proposition 3.12. By
Euler’s formula, triangulations are the independent sets using all of the n boundary
edges and n — 3 edges among the interior edges. For the dimension, remember that Pz
could be seen as a product of n-cube corresponding to the boundary-edge-dimensions
and a polytope for the interior-edge-dimensions. Similarly, Py can be seen as a product
of a point with all components equal to 1 for the former dimensions and a facet of the

polytope in the latter dimensions. O
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Appendix A

Programs and examples

Programs for the algorithms and and examples of computations for point configura-
tions in Chapter 1 are given. The language used is Mathematica [25]. These materials

are available at http://naomi.is.s.u-tokyo.ac.jp/ " fumi/

A.1 Algorithm 1.6: Enumeration of maximal inde-
pendent sets of graphs

(* mis.nb *)

(*

enumerate

enumerate the triangulations (TRI) and maximal independent
sets (MIS)

*xx defined outside *x*x*
Number(0fSimplices = total number of maximal dimensional
simplices
IntersectProperQ[i,j] = True, False
whether simplex[i] and simplex[j]
intersect properly or not
OutputFile = file to append output
simplexVolume[i] = volume of the i-th simplex

wholeVolume = volume of the whole convex hull

*%*% variables **x
current = the current set
level = 0, 1, ..., NumberOfSimplices
trace = array of the trace of search
index: 1, ..., NumberOfSimplices
contents: 0 = not visited
1

Union[currentset,level] was

independent. visiting that unique
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child

2 = Union[currentset,level] was
dependent. visiting the first
child "currentset"

3 = Union[currentset,level] was

dependent. visiting the second
child, which is the maximal subset
of Union[currentset,level]
including "level"

candidate = candidate of the second child

%)

ClearAll [enumerate] ;

enumerate:=
Module[
{current={}, level = 1,
trace,
candidate},
Do[trace[i]=0, {i, NumberOfSimplices}];
While[
level > 0,

If[ level <= NumberOfSimplices,
(* internal node %)
Switch[ ((*xx
Print["trace[",level,"] is ",
trace[level]];
*kok)
trace[levell),

(* 0 = visiting the unvisited child *)

0,

If[ (* Union[current,level] independent 7 *)
SetIntersectProperQ[current,level],
(AppendTo[current,level];

trace[level] = 1; level++),
((* no change to current *)
trace[level] = 2; level++)]

(kx

; Print["node 0, level ",level,", current ",
current]

*kk )

(x 1 = ascending from the unique child *)

1,

(current = Complement [current,{level}];

trace[level] = 0; level--)

(k%

; Print["node 1, level ",level,", current ",
current]

*kk)
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(x 2 = ascending from the first child x)
2,
If[ (¥ the second child exist 7 *)
And[((* making candidate *)
candidate = {};
Scan[
(If [IntersectProperQ[#,level],
AppendTo[candidate,#]1]1)&,
current] ;
AppendTo[candidate,level]
(k%

; Print["candidate ",candidate]

*okk)

)s

(* checking the maximality of
candidate in {1,...,level} *)

Maximal(Q[candidate,level],
(* is parent the lexicographically
smallest parent of candidate 7 *)
LexMinParentQ[current,
candidate,
levelll,
(* the second child exists *)
(current = candidate;
trace[level] = 3; level++),
(* the second child does not exist *)
((* no change to current x)
trace[level] = 0; level--)]
(k%
; Print["node 2, level ",level,", current ",
current]
*kk )
(* 3 = ascending from the second child *)
3,
(current = Complement[current,{levell];
Do[
If[ And[
Not [MemberQ[current,il],
SetIntersectProperQ[current,il],
current=Union[current,{i}]],
{i,level-1}];
trace[level] = 0; level--)
(xxk
; Print["node 3, level ",level,", current ",
current]
*kk)
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1,
(* bottom *)
(1£[
Applyl
Plus,
Abs[
Map[
simplexVolume,
current]]]
==wholeVolume,
((*Print["TRI ",current];*)
PutAppend [{TRI,current},OutputFile]),
((*Print ["MIS ",current];*)
PutAppend [{MIS,current},OutputFile])];
level--)]1]]

(*

SetIntersectProperQ[list,j] = True, False
whether all simplex[i] for some element i of list
intersects properly with simplex[j] or not

*)

ClearAll[SetIntersectProperQ];

SetIntersectProperQ[list_,j_] :=
If[ list=={},

True,
If[ IntersectProperQ[Part[list,1],j],
SetIntersectProper([Rest[1list],j],

False]]
(*
MaximalQ[set,level] = True, False
whether set is a maximal independent set in {1,...,level}
or not
*)
ClearAll[MaximalQ];

MaximalQ[set_,level_] :=
Module[{i=1,j,1=Length[set]},
While[
And[i<=level,
Or[ MemberQ[set,i],
(j=1;
While[
And[j<=1,
IntersectProperQ[i,set[[j]11]1],
j++1;
j<=1)11,
i++];

(k%
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If[ i>level,

Print[set," is maximal in {1,...,",level,"}"],
Print[set," is not maximal in {1,...",level,"}"]1];
*kk )
i>levell

(*
LexMinParentQ[parent,child,level] = True, False
whether parent is the lexicographically smallest parent of
candidate or not
*)
ClearAll[LexMinParentQ];
LexMinParentQ[parent_,child_,level_] :=
Module[{temporaryset,i=1,m},
m = If[ parent=={},
level-1,
Last[parent]];
temporaryset = Complement[child,{levell}];
While[MemberQ[parent,i],
(AppendTo[temporaryset,i];
i++)];
Whilel
And[i < m,
Not [SetIntersectProperQ[temporaryset,i]l],
(i++;
While[MemberQ[parent,i],
(AppendTo[temporaryset,i];
i+ 11;
(€31
If[ i >= m,
Print["parent is lex min parent"],
Print["parent is not lex min parent"]];
*kk)

i >= m]
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A.2 Naive enumeration of d-simplices (Section 1.4)

(* generalpoints.nb *)

enumerateSimplices :=

(*
simplex[i] = list of the indices of its vertices
*)
ClearAll[simplex,simplexVolume,Number0fSimplices];
Module[{i=1,
det,
c=1/(Length[vertex[1]]!),
l=Length[vertex[1]]1+1},

Scan[
([
(det =
Det [
Append [
Transpose [
Map[
vertex,
#11,
Table[1,{1}]11];
det!=0),

(simplex[i]=#;
simplexVolume[i]=c det;
++1)1)&,
KSubsets[Range [Number0fVertices],1]1];
NumberQ0fSimplices = i-1];
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A.3 Algorithm 1.9: Testing intersection of d-simplices

(*

IntersectProperQ[i,j] = True, False

whether simplex[i] and simplex[j]

intersect properly or not *)

ClearAll[IntersectProperQ];

IntersectProperQ[i_,j_]:=

Module[

{OnlyInI

OnlyInJ

Complement [
simplex[i],

simplex[j]],

Complement [
simplex[j],
simplex[i]],

BothInIJ = Intersection[simplex[i],simplex[j]1],
FirstInBothllJ,

Difference,

matrix,
1p},
Difference = Length[OnlyInI];

If[

BothInIJ=={},
(matrix =
Map[(vertex[#]-vertex[simplex[i] [[1]]1]1)&,
simplex[j]]
Inversel[
Map [ (vertex[#]-vertex[simplex[i] [[1]]1]) &,
Drop[simplex[i],11]1];
matrix =
Transpose[matrix];
lp = LinearProgramming[
Join[{1},Table[0,{Difference-13}1],
Join[matrix,
{Table[1,{Difference}]},
{Table[-1,{Difference}]},
{-Apply[Plus,matrix]}
1,
Join[Table[0,{Difference-1}1,{1,-1,-1}11),
(FirstInBothIJ = BothInIJ[[1]];
BothInIJ = Drop[BothInIJ,1];
matrix =
Map[(vertex[#]-vertex[FirstInBothIJ])&,
Join[0OnlyInJ,BothInIJ]]
Inversel[
Map[(vertex[#]-vertex[FirstInBothIJ])&,
Join[0OnlyInT,BothInIJ]]];

matrix =
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Take[
Transpose [
Take [
matrix,
Differencel],
Difference];
lp = LinearProgramming[
Join[{1},Table[0,{Difference-1}]1],
Join[matrix,
{Table[1,{Difference}]}
(%,
{Table[-1,{Difference}]}
*)
1,
Join[Table[0,{Difference}],{1(*,-1x)}1]1)];
Switch[
Head [1p],
LinearProgramming,
True,
List,
False,

-

Error]

(*xPrint[
Join[{1},Table[0,{Difference-1}1],
Join[matrix,
{Table[1,{Difference}]},
{Table[-1,{Difference}]}],
Join[Table[0,{Difference}],{1,-1}1];%)]
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A.4 Memorizing the intersection graph (Section 1.5)

memorizeIntersectProperQ :=

ClearAll[tempTable, IntersectProperQTable] ;
Print[
Timing[
tempTable=
Table[
If[ i>j,
IntersectProperQ[i,j],
Null],
{i,Number0fSimplices},{j,Number0fSimplices}];]
1;

Print[
Timing[
IntersectProper(QTable=
Table[
If[ i>j,
tempTable[[i,j]],
If[ i<j,
tempTable[[j,i]],
Nullll,
{i,Number0fSimplices}, {j,Number0fSimplices}];]
1;

ClearAll[tempTable];
ClearAll[IntersectProperQ];

IntersectProperQ[i_,j_] :=

IntersectProperQTable[[i,j]]
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A.5 A nonregular triangulation

As in Theorem 1.8, Algorithm 1.6 enumerates all triangulations including nonregu-
lar ones. The nonregular triangulation {TRI, {3, 5, 8, 13, 16, 18, 20}} in the

figure below is enumerated.

3
°
6 18 — 13
[ J
16
° . 5 \20
4 5 8
3
[ ] [ ]
1 2
Figure A.1: A nonregular triangulation
(* Nonregular.nb *)
<<DiscreteMath‘Combinatorica‘
OutputFile = "/home/asuka0/fumi/tri/Nonregular.output";
<<"/home/asukal/fumi/tri/mis.m";
<<"/home/asukalO/fumi/tri/generalpoints.m";
ClearAll[vertex,NumberOfVertices];
vertex[1]={ 0, 0};
vertex[2]={ 4, 0};
vertex[3]={ 0, 4};
vertex[4]={ 1, 1};
vertex[5]={ 2, 1};
vertex[6]={ 1, 2};
NumberOfVertices=6;
enumerateSimplices;
ClearAll[wholeVolume];
wholeVolume = 8;
Timing[enumeratel
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied.”
ConstrainedMin: :"nsat": "The specified constraints cannot be satisfied."
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ConstrainedMin::"nsat": "The specified constraints cannot be satisfied."

General::"stop":

"Further output of \!\(ConstrainedMin

during this calculation."

{26.8 Second,Null}

?7simplex

"Global ‘simplex"

simplex[1] =
simplex[2] =
simplex[3] =
simplex[4] =
simplex[5] =
simplex[6] =
simplex[7] =
simplex[8] =
simplex[9] =
simplex [10]
simplex[11]
simplex[12]
simplex[13]
simplex[14]
simplex [15]
simplex[16]
simplex[17]
simplex[18]
simplex[19]
simplex [20]

?7simplexVolume

{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{2,
{2,
{2,
{2,
{2,
{2,
{3,
{3,
{3,
{4,

- - -

- -

-

-

B W w W N NNN

o o P OO D W Www o

-

-

-

-

-

-

-

-

-

-

-

"Global ‘simplexVolume"

simplexVolume[1]
simplexVolume [2]
simplexVolume [3]
simplexVolume [4]
simplexVolume[5]
simplexVolume[6]
simplexVolume[7]
simplexVolume [8]
simplexVolume [9]
simplexVolume [10]
simplexVolume[11]
simplexVolume [12]
simplexVolume [13]
simplexVolume [14]
simplexVolume[15]

8
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simplexVolume[16] = -1/2
simplexVolume[17] = 3/2
simplexVolume[18] = 1/2
simplexVolume[19] = -1/2
simplexVolume[20] = 1/2

1" /home/asuka0/fumi/tri/Nonregular.output"

{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,
{TRI,

{1}}

{4, 7, 13}}

{3, 5, 8, 12, 17}}

{3, 5, 8, 12, 18, 19, 20}}
{3, 5, 8, 13, 16, 18, 20}}
{3, 7, 8, 9, 12, 19, 20}}
{3, 7, 8, 9, 13, 16, 20}}
{3, 7, 10, 12, 19}}

{3, 7, 10, 13, 16}}

{3, 6, 12}}

{2, 5, 11}}

{2, 5, 13, 14, 16, 18, 20}}
{2, 5, 13, 15, 18}}

{2, 5, 12, 14, 17}}

{2, 5, 12, 14, 18, 19, 20}}
{2, 7, 9, 12, 14, 19, 20}}
{2, 7, 9, 13, 14, 16, 20}}
{2, 7, 9, 13, 15}}
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A.6 Schonhardt’s polyhedron

Algorithm 1.6 enumerates, not only triangulations, but also maximal independent sets
which are not triangulations. Schénhardt’s polyhedron mentioned in Section 1.2 was
such example. The three outer tetrahedra in the right of the figure below corresponds

to the maximal independent set {MIS, {4, 8, 13}}.

Figure A.2: A maximal independent set which is not a triangulation

(* Schonhardt.nb *)

<<DiscreteMath‘Combinatorica‘’

OutputFile = "/home/asukaO/fumi/tri/Schonhardt.output";

<<"/home/asukal/fumi/tri/mis.m";

<<"/home/asukalO/fumi/tri/generalpoints.m";

ClearAll[vertex,NumberOfVertices];

vertex[1]={ 0, 0, 0};
vertex[2]={ 1, 0, 0%};
vertex[3]={ 0, 1, 0%};
vertex[4]={ 1/8, -1/8, 1};
vertex[5]={ 1, 1/8, 1};
vertex[6]={ -1/8, 1, 1};

NumberOfVertices=6;

enumerateSimplices;

ClearAll[wholeVolume];
wholeVolume = 73/128;
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Timing[enumerate

]

ConstrainedMin: :"nsat":

ConstrainedMin: :"nsat":

ConstrainedMin: :"nsat":

General::"stop":

"Further output of \!\(ConstrainedMin

"The specified constraints cannot be satisfied."

"The specified constraints cannot be satisfied."

"The specified constraints cannot be satisfied."

during this calculation."
{5.44 Second,Null}

??simplex

"Global ‘simplex"

simplex[1] =
simplex[2] =
simplex[3] =
simplex[4] =
simplex[5] =
simplex[6] =
simplex[7] =
simplex[8] =
simplex[9] =
simplex [10]
simplex[11]
simplex[12]
simplex[13]
simplex[14]
simplex[15]

?7simplexVolume

{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{1,
{2,
{2,
{2,
{2,
{3,

W W W N NDNDNDDNDN

N N U U OC R N

-

-

-

-

-

-

-

-

-

- - -

-

- -

-

g DO A DWW W

(ST & 2 B 2 B S R G N

- - -
-

-

-
-

43}
5}
6}
5}
63}
63}
5}
63}
63}
6}
5}
6}
6}
6}
6}

"Global ‘simplexVolume"
simplexVolume[1] = -1/6

simplexVolume [2]
simplexVolume [3]
simplexVolume [4]
simplexVolume[5]
simplexVolume[6]
simplexVolume[7]
simplexVolume [8]
simplexVolume [9]
simplexVolume [10]
simplexVolume[11]
simplexVolume [12]
simplexVolume [13]
simplexVolume [14]
simplexVolume[15]

-1/6
-1/6
1/24
3/16
7/48
-7/48
1/24
3/16
-67/384
-3/16
-7/48
1/24
-67/384
-67/384
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'1"/home/asukal/fumi/tri/Schonhardt.output”
{TRI, {1, 8, 11, 15}}
{TRI, {1, 8, 12, 13, 14}}
{TRI, {3, 4, 6, 10, 13}}

{TRI, {3, 5, 13, 14}}
{TRI, {2, 4, 7, 8, 15}}
{MIS, {4, 8, 13}}

{TRI, {2, 4, 9, 10}}
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A.7 Products of two simplices

A.7.1 Enumeration of vertices

(* deltakdeltal.nb x*)

(*

products of two simplices $\Delta_k \times \Delta_1$
k and 1 are the dimensions

%)

enumerateVerticesDeltakDeltal :=

(

(*
vertexmatrix is
the matrix of the full dimensional point arrangement
*)
ClearAll[vertexmatrix];
vertexmatrix=
Transpose[
Drop[
Drop[
Transpose [
Flatten[
Outer[
Join,
IdentityMatrix[k+1],
IdentityMatrix[1+1],
11,
1117,
{k+1}],
{k+1+1}17;

(%
vertex[i] = USED vertices of simplex i
the full dimensional point arrangement of (k+1)(1+1)
vertices
*)
ClearAll[vertex];
Do[
vertex[i] = vertexmatrix[[i]],

{i, (k+1) (1+1) }];

ClearAll [vertexmatrix]
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A7.2 A X Ay

The polytope Az x Ay and its triangulations are shown in Figure 1.1 and 1.2.

(* delta2deltal.nb *)

(%
products of two simplices $\Delta_k \times \Delta_1$

k and 1 are the dimensions

*)

ClearAll[k,1];

k=2;

1=1;

OutputFile = "/home/asuka0/fumi/tri/delta2deltal.output";
<<DiscreteMath‘Combinatorica’
<<"/home/asukal/fumi/tri/mis.m";
<<"/home/asukalO/fumi/tri/generalpoints.m";
<<"/home/asukal/fumi/tri/deltakdeltal.m";

enumerateVerticesDeltakDeltal;

ClearAll [NumberOfVertices];
NumberOfVertices = (k+1) (1+1);

enumerateSimplices;

ClearAll[wholeVolume];
wholeVolume = 1/(k! 1!);

Timing[enumerate]
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied."
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied.”
ConstrainedMin: :"nsat": "The specified constraints cannot be satisfied."

General::"stop":
"Further output of \!\(ConstrainedMin :: \"msat\"\) will be suppressed \
during this calculation."

{3.13 Second,Null}

7??vertex

"Global ‘vertex"

vertex[1] {1, o, 1}
vertex[2] = {1, 0, 0}
vertex[3] = {0, 1, 1}
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vertex[4] = {0, 1, O}

vertex[5] = {0, 0, 1}
vertex[6] = {0, 0, O}
??simplex

"Global ‘simplex"

simplex[1] = {1, 2, 3, 5}
simplex[2] = {1, 2, 3, 6}
simplex[3] = {1, 2, 4, 5}
simplex[4] = {1, 2, 4, 6}
simplex[5] = {1, 3, 4, 5}
simplex[6] = {1, 3, 4, 6}
simplex[7] = {1, 3, 5, 6}
simplex[8] = {1, 4, 5, 6}
simplex[9] = {2, 3, 4, b5}
simplex[10] = {2, 3, 4, 6}
simplex[11] = {2, 3, 5, 6}
simplex[12] = {2, 4, 5, 6}
??simplexVolume

"Global ‘simplexVolume"
simplexVolume[1] = 1/6
simplexVolume[2] = 1/6
simplexVolume[3] = 1/6
simplexVolume[4] = 1/6
simplexVolume[5] = -1/6
simplexVolume[6] = -1/6
simplexVolume[7] = 1/6
simplexVolume[8] = 1/6
simplexVolume[9] = -1/6
simplexVolume[10] = -1/6
simplexVolume[11] = 1/6
simplexVolume[12] = 1/6

't "/home/asukaO/fumi/tri/delta2deltal.output"

{TRI, {1, 9, 12}}
{TRI, {1, 10, 11}}
{TRI, {4, 5, 8}}
{TRI, {4, 6, 7}}
{TRI, {3, 5, 12}}
{TRI, {2, 7, 10}}
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A.7.3 As X A,

(x delta2delta2.nb *)

(*
products of two simplices $\Delta_k \times \Delta_1$
k and 1 are the dimensions

*)

ClearAll[k,1];

k=2;

1=2;

OutputFile = "/home/asuka0/fumi/tri/delta2delta2.output";
<<DiscreteMath‘Combinatorica‘
<<"/home/asukal/fumi/tri/mis.m";
<<"/home/asuka0/fumi/tri/generalpoints.m";
<<"/home/asukal/fumi/tri/deltakdeltal.m";

enumerateVerticesDeltakDeltal;

ClearAll [NumberOfVertices];
Number(OfVertices = (k+1) (1+1);

enumerateSimplices;

ClearAll[wholeVolume];
wholeVolume = 1/(k! 1!);

Timing[enumerate]
ConstrainedMin::"nsat": "The specified constraints cannot be
ConstrainedMin::"nsat": "The specified constraints cannot be
ConstrainedMin::"nsat": "The specified constraints cannot be

General::"stop":

"Further output of \!\(ConstrainedMin :: \"msat\"\) will

during this calculation."
{1214.61 Second,Null}

50

satisfied."
satisfied."

satisfied."

be suppressed \



A.7.4 A, X A, (memorizing the intersection graph)

The computation becomes faster by memorizing the intersection graph (Section 1.5).

The previous example took 1200 seconds, whereas this one 50 + 100 = 150 seconds.

(*
products of two simplices $\Delta_k \times \Delta_1$

k and 1 are the dimensions

*)

ClearAll[k,1];

k=2;

1=2;

OutputFile = "/home/asuka0/fumi/tri/delta2delta2.output2";
<<DiscreteMath‘Combinatorica‘
<<"/home/asukal/fumi/tri/mis.m";
<<"/home/asuka0/fumi/tri/generalpoints.m";
<<"/home/asukal/fumi/tri/deltakdeltal.m";

enumerateVerticesDeltakDeltal;

ClearAll [NumberOfVertices];
NumberQfVertices = (k+1) (1+1);

enumerateSimplices;

ClearAll[wholeVolume];
wholeVolume = 1/(k! 1!);

memorizeIntersectProper(;

Timing[enumerate]
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied."
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied."
ConstrainedMin::"nsat": "The specified constraints cannot be satisfied.”

General::"stop":
"Further output of \!\(ConstrainedMin :: \"msat\"\) will be suppressed \
during this calculation."

{43.74 Second,Null}

{0.58 Second,Null}

{98.95 Second,Null}
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