「GWAS後」のための遺伝統計解析: メタ解析と精密マッピング

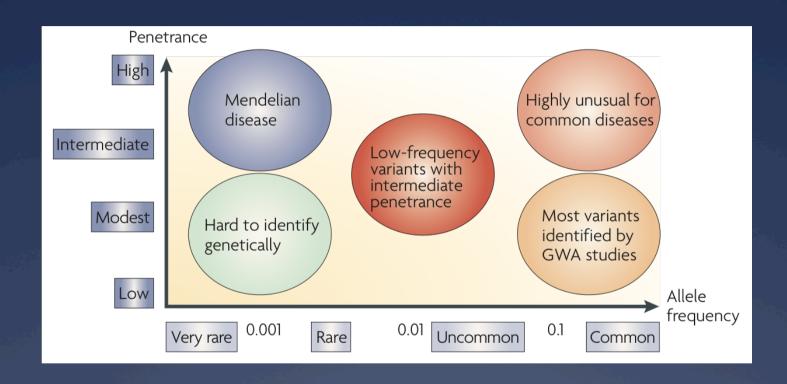
竹内史比古(たけうち ふみひこ) 国立感染症研究所

2011年9月16日 @理研・CGMセミナー

GWAS(後)に役立つ統計手法

- * 関連の強さを定量的に評価する
 - ゲノムワイド関連解析(GWAS)
 - 2. GWASのメタ解析
 - 3. 低頻度多型の関連解析
- * GWASで見つかった染色体領域の精密マッピング

ゲノムワイド関連解析(GWAS)


- * 目標: ありふれた(頻度 ≥5%)の一塩基多型(SNP)の 全てについて、ありふれた疾患との関連を検定する
- * 染色体上で近傍のSNPsは相関しており(連鎖不平衡)、 冗長なもの(r²>0.8)を省いて、約10⁶ SNPs をタイピン グできるマイクロアレイを使う
 - * ヒトゲノム配列決定、dbSNP、HapMap、アレイ技術により実現
- * 10⁶ 回の多重検定を行うので、擬陽性を抑えるために、 有意水準を 0.05/10⁶ = 5x10⁻⁸ と厳しくしないといけな い
- * 検出力を上げるためには、罹患者・健常者を数千人ター イピングする必要がある

SNPsの相関(連鎖不平衡)

- * 染色体19番の 200kbの領域 中の108 SNPs
- * 日本人45人(染 色体90本)にお ける遺伝子型

GWASで検出できる関連多型

* あまり定量的ではない

SNPの関連の検定

- * i番目の人のSNP 遺伝子型を x_i = 0, 1, 2 * 例、アリルがA/Cのとき、0 (CC), 1 (AC), 2 (AA)
- * 連続形質との関連の検定
 - * i番目の人の形質の値を y_i(例、血糖値)
 - * 線形回帰
 - * 誤差 ε_i ~ Normal(0, σ^2)
 - * 帰無仮説: β = 0

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- * 疾患との関連の検定
 - * i番目の人の表現型を y; = 1(罹患), 0(健常)
 - * ロジスティック回帰
 - * $y_i \sim Bernoulli(p_i)$
 - * 帰無仮説: β = 0

$$\log \frac{p_i}{1 - p_i} = \alpha + \beta x_i$$

st 尤度を最大化する \hat{lpha},\hat{eta} を求める

SNPの関連の検出力

* yの分散は、xで説明される部分(S_R)と残差平方和(S_F)に分解できる

$$\sum_{i=1}^{N} (y_i - \bar{y})^2 = \sum_{i=1}^{N} (\hat{\alpha} + \hat{\beta} x_i - \bar{y})^2 + \sum_{i=1}^{N} (y_i - \hat{\alpha} - \hat{\beta} x_i)^2$$

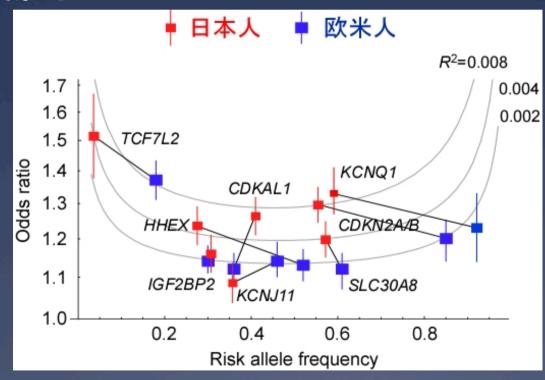
$$= S_R + S_E$$

- * 検定に用いる統計量 S_R/{S_F/(N-2)} は
 - * 関連が無いとき(帰無仮説)は F_{1.N-2}分布に従う
 - * 関連が有るとき(対立仮説)は非心度パラメータ N R²/{1-R²} の F_{1,N-2}分布
 - * 連続形質 y の分散のうち、SNP遺伝子型 x で説明される割合を R² とする(決定係数)。これは相関係数の二乗。
 - * N はサンプルの人数
- * 有意水準 5x10⁻⁸ のもとで、検出力が 80% となるのは、非心度パラメータ が約40のとき
 - * R²=0.1 なら N=360
 - * R²=0.01 なら N=4000(例、日本人での糖尿病に対する KCNQ1)
 - * R²=0.005 なら N=8000(例、同じく CDKAL1)
 - * R²=0.001 なら N=40000
 - * ざっくり N<u>≒40/R²</u>
 - → 弱い関連を検出するには多数のサンプルが必要

R²とアリルの頻度・効果の関係

* アリルの頻度が p のとき

$$R^2 = 2 p (1-p) \beta^2$$


- * 量的形質の値 y は分散が1になるように標準化しておく
- * 疾患との関連については

 $R^2 = 0.5 p (1-p) (log OR)^2$

- * OR はオッズ比
- * p > 0.05, OR < 1.3 のときに使える近似
- * R² は相関係数の二乗として定義
- * サンプル中の疾患群と健常群が半々と仮定

糖尿病の初期のGWAS

- * ORが大きく、アリル頻度が0.5に近い SNPは関連が強い
 - * 日本人では CDKAL1, CDKN2A/B, KCNQ1
 - * 欧米人では TCF7L2

GWAS(後)に役立つ統計手法

- * 関連の強さを定量的に評価する
 - 1. ゲノムワイド関連解析(GWAS)
 - 2. GWASのメタ解析
 - 3. 低頻度多型の関連解析
- * GWASで見つかった染色体領域の精密マッピング

メタ解析による複数研究の統合

* 線形回帰

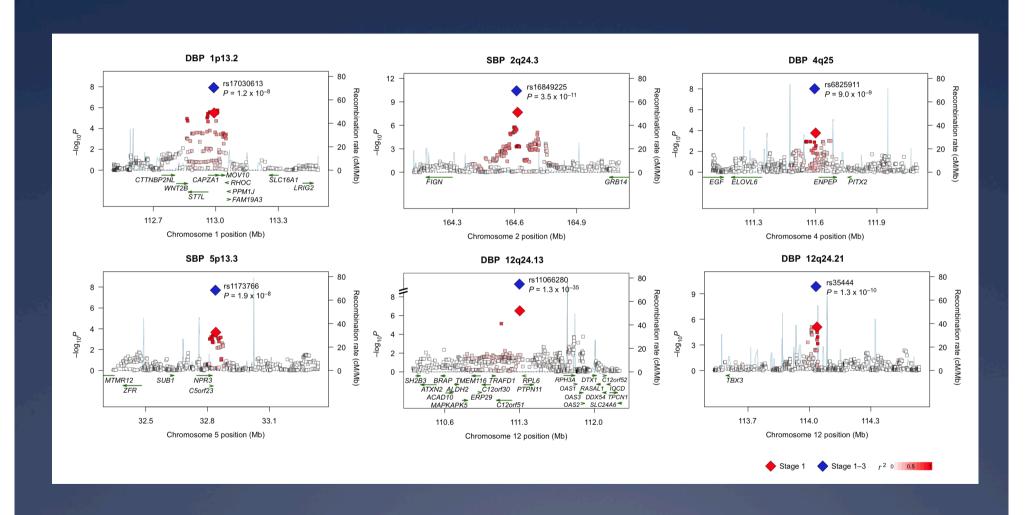
- * i番目の人のSNP 遺伝子型を x_i = 0, 1, 2
- * i番目の人の連続形質の値を y_i(例、血糖値)

$$y_i = \alpha + \beta x_i + \varepsilon_i$$

- * 誤差 ε_i ~ Normal(0, σ^2)
- * 連続形質に対するSNPの効果が β
- * 複数の研究で推定された効果を統合する
 - * j番目の研究での効果の推定値が β_i、標準誤差が s_i
 - * 1/s_i²で重み付け
 - * 全体での効果の推定値 β、標準誤差が s
 - * 利点: 個人の遺伝子情報は外に出さずに済む

$$\beta = \frac{\sum_{j} \frac{\beta_{j}}{s_{j}^{2}}}{\sum_{j} \frac{1}{s_{j}^{2}}}$$

$$s = \sqrt{\frac{1}{\sum_{j} \frac{1}{s_{j}^{2}}}}$$


メタ解析の実際

- * 実際の解析はMETALなどのソフトウェアを使えば簡単
- * QCが肝要
 - * 遺伝子型 imputation は正確に行われているか
 - * タイピングに用いたマイクロアレイに搭載されていないSNPsの遺 伝子型を推測
 - * 各studyが報告している効果βは「どちらのアリル」のものか
 - * "coding allele" "effect allele" を理解していない人は多い
 - * Minor, major, VIC, FAM, illumina A/B
 - * 間違いを含んでいるstudy。それを加えると
 - * アリル頻度のばらつきが大きくなる
 - * 効果のheterogeneityが大きくなる

東アジア人大規模GWASメタ解析

- * 目的
 - * 東アジア人で影響の強い高血圧関連遺伝子座の探索
- * 方法
 - * 1次スクリーニング
 - * 東アジア人(日本・韓国・中国・台湾・シンガポール)ゲノム疫学コンソーシアム(AGEN)の約2万人を対象としたGWAS結果をメタ解析する。
 - * ゲノムワイドに~200万 SNPs を検定
 - * 2次スクリーニング
 - * 日本人1万人をタイピング
 - * 追試
 - * 日本人2万人をタイピング

血圧感受性領域の新規同定

GWASメタ解析で見つかった感受性多型の強さ

- * R²=0.0005 \sim 0.0031
- * 検出力80%となるのは、N=13,000~80,000

Chr	SNP ID (pos	Coded/ Other allele	Nearby Gene(s)	N	Coded allele freq.	SBP			DBP		
Cili	Build 36.3)					Beta (SE), mm Hg	P	R^2	Beta (SE), mm Hg	P	R^2
1	rs17030613	C/A	ST7L	49,952	0.49	0.49 (0.11)	8.4E-06	0.0003	0.38 (0.07)	1.2E-08	0.0006
	(112,971,190)		CAPZA1								
2	rs16849225	C/T	FIGN	49,511	0.61	0.75 (0.11)	3.5E-11	0.0007	0.29 (0.07)	2.7E-05	0.0003
	(164,615,066)		GRB14								
4	rs6825911	C/T	ENPEP	49,515	0.51	0.60 (0.11)	7.3E-08	0.0005	0.39 (0.07)	9.0E-09	0.0006
	(111,601,087)										
5	rs1173766	C/T	NPR3	49,970	0.60	0.63 (0.11)	1.9E-08	0.0005	0.36 (0.07)	1.2E-07	0.0005
	(32,840,285)										
12	rs11066280	T/A	PTPN11	46,957	0.75	1.56 (0.13)	7.9E-31	0.0024	1.01 (0.08)	1.3E-35	0.0031
	(111,302,166)		ALDH2								
12	rs35444	A/G	TBX3	49,984	0.75	0.63 (0.13)	7.5E-07	0.0004	0.50 (0.08)	1.3E-10	0.0008
	(114,036,820)										

GWAS(後)に役立つ統計手法

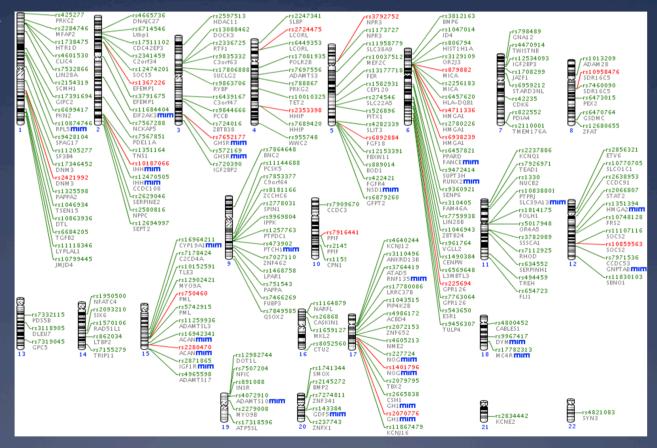
- * 関連の強さを定量的に評価する
 - 1. ゲノムワイド関連解析(GWAS)
 - 2. GWASのメタ解析
 - 3. 低頻度多型の関連解析
- * GWASで見つかった染色体領域の精密マッピング

低頻度変異の関連解析の現状

- * ありふれた疾患についての、低頻度変異(0.5~5%)関連 解析
 - * 全ゲノムシーケンス(~4x)はせいぜい500人まで
 - * Exome シーケンスはせいぜい1000人
- * 見つかる変異の数が多い
 - * そのままでは、サンプルサイズが小さいのに有意水準を厳しくしないといけない!
- * ヒットが報告は少ない。クローン病、脂質で報告有り

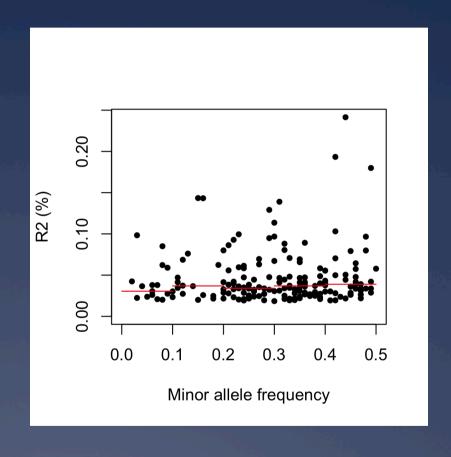
原因変異の頻度スペクトラム

- * 原因変異のうち、ありふれたもの・低頻度のものはどのくらいあり、関連の強さはどのくらいか?
- * 対象形質が選択圧を受けてきたか
 - * 選択圧を受けている形質
 - * あまりに効果の強いアリルは、頻度が高くなれない
 - * ありふれた疾患の多く
 - * 選択圧を受けていない形質
 - * 頻度が大きくなりうる
 - *薬剤反応。ワルファリン服用量など
 - * 現代の環境(高齢化・飽食)のみで問題になるもの?
- * 集団サイズの歴史

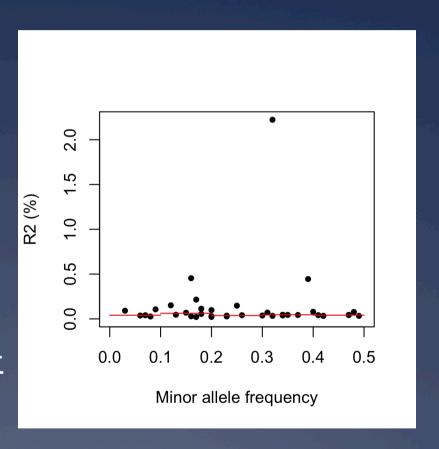

頻度スペクトラム

- * 原因変異のうち、低頻度(0.5~5%)のものの関連の強さはどの くらいか
 - * ありふれた変異(≥5%)から推測(外挿)する
 - * 身長
 - * 脂質
 - * ありふれた変異については、頻度と関連の強さ(R²)の大小は 関係ない
 - → 頻度に依らず、従来のGWASと同程度のサンプルサイズが必要(有意水準と検出力を揃えたとき)
- * 変異の数(疾患と関連しないもの含めた全体)は頻度が下がる に従って次第に増える
- * 低頻度領域で原因変異が容易に見つかることは無さそう

身長と関連する遺伝子多型


* 2010年には、 欧米人183,727 人のGWASメタ 解析で、180の 遺伝子領域が 同定された

Supplementary Figure 2. 199 loci associated with adult height variation. Karyogram displaying the genome location of the 180 height SNPs identified from the primary meta-analysis (green) and the 19 secondary signals (red) discovered in the conditional analysis to be associated with height. The closest genes to the SNPs (gray) are followed by a MIM (blue) label if the gene underlies a skeletal growth-related Mendelian disorder described in OMIM. The plot was created using Affyrmation (http://genepipe.ngc.sinica.edu.tw/affyrmation/).

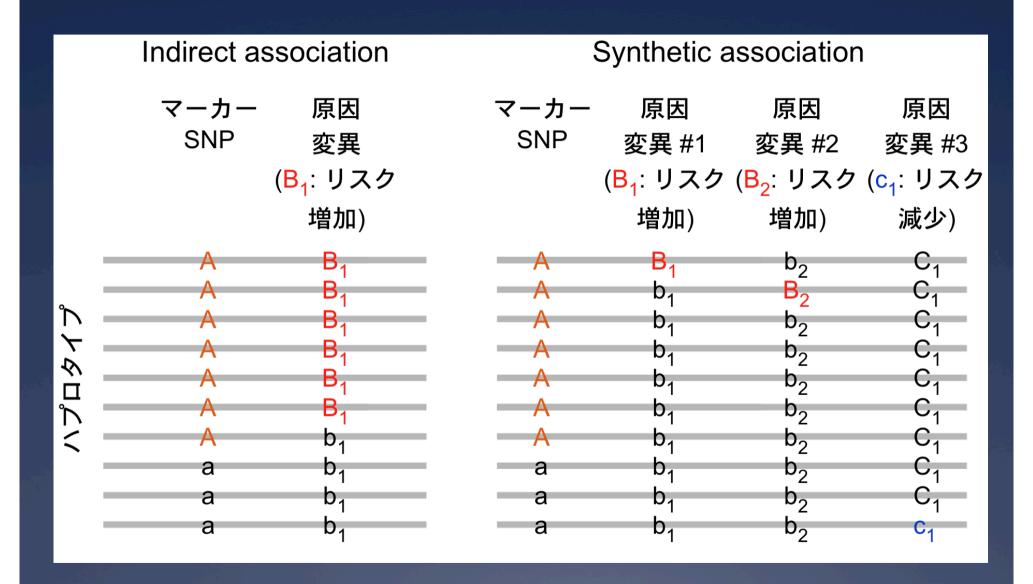

頻度と関連の強さ: 身長関連SNPs

- * 欧米人 183,727人の GWASメタ解析
- * 身長と関連する 180 SNPs
- * 赤線は、頻度10%ごとの R²の中間値
- * R²の分布はアリル頻度に 依らず一定している

頻度と関連の強さ: 脂質関連SNPs

- * 欧米人 >100,000人の GWASメタ解析
- * HDLとの関連が強い 38 SNPs
- * 赤線は、頻度10%ごとの R²の中間値
- * R²の分布はアリル頻度に 依らず一定している

第1部のまとめ:


- * 連続形質や疾患と関連するSNPについては、アリルの頻度と効果の強さ(β かオッズ比)から、関連の強さ R² を計算できる
- * このパラメータに基づいて、関連解析の検出力や必要なサンプルサイズが評価できる
- * GWASからGWASメタ解析へとサンプルサイズを増やすことにより、 R² が小さい関連多型も検出できるようになった
- * 低頻度多型についても、ありふれた多型と R² の分布は似ており、 同程度のサンプルサイズが必要かもしれない

GWAS(後)に役立つ統計手法

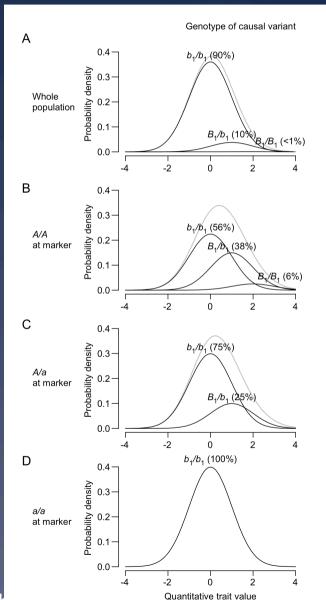
- * 関連の強さを定量的に評価する
 - 1. ゲノムワイド関連解析(GWAS)
 - 2. GWASのメタ解析
 - 3. 低頻度多型の関連解析
- * GWASで見つかった染色体領域の精密マッピング

GWASで見つかった染色体領域の精密マッピング

- * ゲノムワイド関連解析により、形質と関連するcommon(頻度 ≥5%)な一塩基多型(SNP)が多数見つかったが、これらはマー カーであり、関連の元となる原因変異は同定できていない
 - * 関連SNPの周辺の遺伝子のどれが原因か絞り込めないことも多い
- * マーカーSNPと原因変異の関係は?
 - * Indirect association: マーカーSNPと頻度が同等で、強い相関を示す(連鎖不平衡係数 r²≈1)原因変異が1つ有る
 - * Synthetic association:マーカーSNPよりも頻度が低く、相関が強くはない原因変異が(複数)有る[Dickson 他 PLoS Biol 8:e1000294]
- * 原因変異の同定には、大規模な塩基配列再解読・タイピングが必要で、手間が大変!
- * 遺伝統計から、少し見当をつけられないか...

提案1: 遺伝子型間での異分散性から synthetic associationを検出する

- * マーカーSNPと量的形質(QT)の関連がsyntheticかを統計的に検出する
 - * マーカーSNPの3つの遺伝子型間で、QTの分散が不均一ならば、syntheticと判定する
 - * 異分散性は Bartlett's test [Bartlett 1937] で検定する
 - * QT全体の分布は予め rank-based inverse normal transformation [Blom 1958] で正規化しておく
 - * 原因変異が未知でも検出できる!


低頻度原因変異に因る異分散性:

モデルケース

- * SNPs and haplotypes
 - * marker SNP with alleles A and a
 - * causal variant with alleles B_1 and b_1
 - * allele B₁ (5% in frequency) is always linked to allele A (20% in frequency); thus existing haplotype classes are AB₁, Ab₁ and ab₁

* QT distribution

- * Normally distributed with the unit variance and the mean equal to 2, 1 and 0 within a subgroup of individuals having genotype B_1/B_1 , B_1/b_1 and b_1/b_1 , respectively
- * **A:** In the whole population, a mixture of the normal distributions combined according to the frequency of genotypes B_1/B_1 , B_1/b_1 and b_1/b_1
- * **B**: Individuals with A/A genotype at the marker SNP are enriched with the genotypes of B_1/B_1 and B_1/b_1 at the causal variant, which are minor in the whole population. 分散が大きい
- * C: Individuals with A/a genotype

低頻度原因変異に因る異分散性: APOE遺伝子とLDLコレステロール

- APOE 遺伝子は LDL コレステロール (LDL-C) 量と関連する
 - 3つの isoform が2つの原因変異 (MAF < 10%) でコードされている
 - E3 (一般的) に対して、E2 (rs7412, Arg158Cys) では LDL-C 減少、 E4 (rs429358, Cys112Arg) では LDL-C 増加

		Marker	Causal	Causal			
		SNP	variant	variant			
Isofor	m Freq	rs405509	rs7412	rs429358			
F2	5%		_				
E3	26%		Ċ	-			
E3	60%			÷			
E3	10%		C	C			
L4	1076	A	-				

マーカー SNP rs405509 (MAF >30%) では異分散性が有意 (4990人で検定)

Testing heteroscedasticity of SNPs in the APOE locus associated with LDL-C.											
SNP	Genotype	Number of individuals		Distribution of LDL-C level			Association with LDL-C level				Heterosce dasticity
			Г	Mean	Variance		Beta	p-value	R^2		p-value
rs405509	C/C	462		-0.153	1.182		-0.117	1.0E-07	0.006		0.019
(GWAS SNP)	C/A	2035		-0.050	0.976						
	A/A	2343		0.073	0.978						
rs377702	T/T	32		-0.487	1.231		-0.191	5.1E-07	0.005		0.583
(GWAS SNP)	T/C	677		-0.149	1.025					П	
	C/C	4131		0.028	0.991						
rs7412	T/T	12		-1.302	1.079		-0.651	2.0E-44	0.040		0.92
(causal variant)	T/C	452		-0.584	0.981						
	C/C	4376		0.064	0.960						
rs429358	T/T	3954		-0.042	0.987		-0.212	1.4E-09	0.008		0.73
(causal variant)	T/C	850		0.185	1.023						
	C/C	36		0.214	1.104						

We first adjusted LDL-C level for body mass index and categories by sex and age (≤40, 41–50, 51–60, ≥61 years), and then applied rank-based inverse normal transformation. Individuals under lipid treatment were excluded. Data is shown for 4840 individuals with complete observation from the Amagasaki study in (Takeuchi 21:1122 et al. 2010).

シミュレーションによる検出力の評価

- * ゲノムワイド関連解析で同定されるマーカー SNPを仮定する(寄与率 R²=0.00592; 有意水準 5x10⁻⁸のもと、5000人で関連を検定したときの 検出力が0.5)
- * Synthetic association について4つのモデルを仮定(次ページ)
- * シミュレーション(1000回)
 - * マーカーSNPと原因変異の遺伝子型とQTをランダム に生成(5000人)
 - * Synthetic associationを検定して、検出力を評価

Synthetic association のモデル

* SNPs and alleles

- * Marker SNP has alleles A and a
- * I causal variants each have alleles B_1 and b_1 , B_2 and b_2 , up to B_1 and b_1 , where the causal (low-frequency) allele B_1 is linked to marker allele A
- * m other causal variants each have alleles C₁ and c₂, C₂ and c₃, up to C_m and c_m, where the causal

* Model 1 (マーカーの片方のアリルに、全ての低頻度変異アリルが連鎖している)

- * All causal alleles linked to marker allele A have identical effect-size
- * No causal allele linked to allele a

* Model 2 (マーカーの両アリルに、低頻度変異アリルが均等に連鎖している)

- * Fffect-size is uniform
- * Cumulative frequencies equal between causal alleles B, and causal alleles

* Model 3

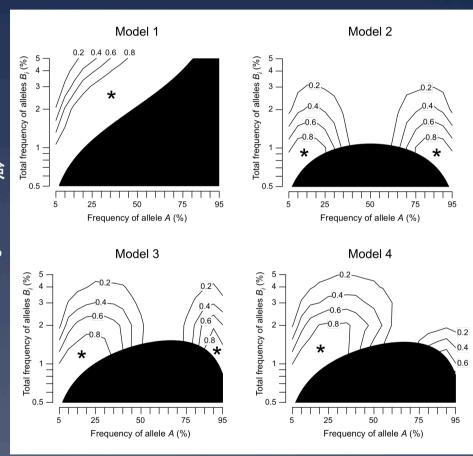
- * Effect-size of causal alleles is uniform
- * Cumulative frequency of the causal alleles B, is twice the cumulative frequency of causal alleles

* Model 4

- * Cumulative frequencies are equal between causal alleles linked to the two marker alleles
- * Effect-size of causal alleles B is twice the effect-size of causal alleles

Takeuchi et al. (2011) Genome Res 21:1122

結果1:遺伝子型間での異分散性から synthetic associationを検出する


検出力をシミュレーションで評価した

* Model 1

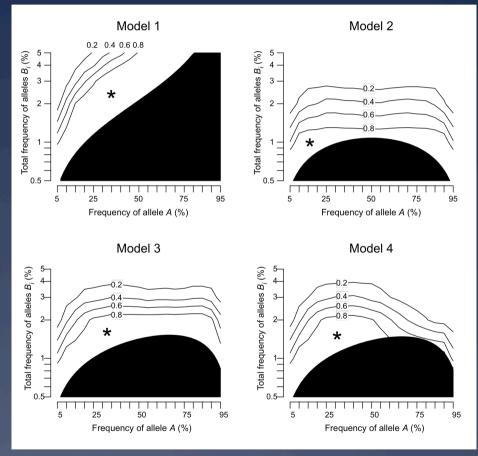
- * マーカーの片方のアリルに、全ての低頻度変異アリルが連鎖している場合
- * (マーカーアリルの頻度) ≥ 45% なら検 出可能
- * (マーカーアリルの頻度) = 25% で、 (低頻度変異アリルの合計頻度) < 3% なら検出可能

* Model 2

- * マーカーの両アリルに、低頻度変異アリルが均等に連鎖している場合
- * マーカーアリルの頻度~50%では検出 できない!

- •星(*)の領域で synthetic association が検出可能 (検出力 >0.8)
- •黒塗りの領域は原因変異が存在し得ないので無視

Takeuchi et al. (2011) Genome Res 21:1122


提案2: 異分散性と歪度から synthetic associationを検出する

- * Model 2(マーカーの両アリルに、低頻度変異アリルが 均等に連鎖している)については、
 - * 異分散性が生じないが
 - * 各遺伝子型でのQT分布は歪んでいる
- * 各遺伝子型でのQT分布の歪度もsynthetic associationの検出指標になる
- * 提案2:異分散性と歪度を(Fisherの方法で)組合せて synthetic associationを検定する

結果2:異分散性と歪度から synthetic associationを検出する

検出力をシミュレーションで評価した

- * Models 1, 3, 4
 - * (マーカーアリルの一方に連鎖する変 異アリルの合計頻度) ≤ 2% なら検出 可能
- * Model 2
 - * マーカーの両アリルに、低頻度変異ア リルが均等に連鎖している場合
 - * (マーカーアリルの一方に連鎖する変 異アリルの合計頻度)≤1%なら検出 可能
- * いずれの場合も
 - * (変異アリルの合計頻度)≤3% なら 検出可能

- •星(*)の領域で synthetic association が検出可能 (検出力 >0.8)
- •黒塗りの領域は原因変異が存在し得ないので無視

Takeuchi et al. (2011) Genome Res 21:1122

疾患との関連への応用

- * Case-control 解析でも、似たような考えが使える
- * 疾患関連マーカーのアリルを A/a とする
- * サンプルを遺伝子型 AA, Aa, aa に層別し、各群について近傍の SNPs の関連を調べる
- * synthetic association により、アリル A の一部に原因変異 が乗っている場合
 - → AA, Aa の群では近傍の SNPs が関連を示すが、aa では示さない
- * Indirect association の場合
 - → AA, Aa, aa いずれの群でも、近傍の SNPs は関連を示さない

第2部のまとめ

- * ゲノムワイド関連解析で見つかったSNPの関連が低頻度変異に由来する(synthetic)かは、QT分布の遺伝子型間の異分散性と歪度により統計的に検出できる
- * 低頻度原因変異の合計頻度 < 3% の場合、検出力 >80%(有意 水準5%、5000人で検定)
- * synthetic な関連が検出されたときは、低頻度多型の探索により、 原因変異の同定が期待できる
 - → 精密マッピングの方針決定に役立つ

今日のまとめ

- 1 連続形質や疾患と関連するSNPについて、関連の強さを R² で定量できる
 - * このパラメータに基づいて、関連解析の検出力や必要なサンプルサイズが評価できる
 - * GWASにおいては、106 SNPs を多重検定することから、真の関連を見つけ出すには多数のサンプルが必要になる
 - * サンプルサイズを大きくするためには、多数のGWASのメタ解析 が有効である
- 2 GWASあるいはそのメタ解析で同定される関連多型はあくまでもマーカーであり、原因多型を同定するための精密マッピングが必要
 - * そのための新たな統計手法が必要。その一つとして、遺伝子型 ごとの表現型の分散を調べる手法が有効である