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ABSTRACT

Several combinatorial aspects of triangulations and their generalizations are studied in this thesis. A
triangulation of a point configuration and a d-dimensional polyhedron whose vertices are among the points
is a decomposition of the polyhedron using d-simplices with vertices among the points.

The two main fields triangulations appear are combinatorial geometry in mathematics and computa-
tional geometry in information science. The topics connected to triangulations in combinatorial geometry
include, polytope theory, Grobner bases of affine toric ideals, Hilbert bases, generalized hypergeometric
functions, and Ehrhart polynomials. Many fields of computational geometry, such as computer graphics,
solid modeling, mesh generation, and motion planning, use triangulations extensively. The problems we
consider are among the main interests in combinatorial geometry. The topics are on simplified basic sit-
uations for computational geometry, but are those arising in applications and giving advice for planning
algorithms.

The objects we study are those around triangulations: (1) triangulations and dissections of 3-polytopes,
(2) triangulations (mainly) in the plane, (3) 2-dimensional spheres, and (4) 2-dimensional simplicial com-
plexes. They are from rigid to abstract in this order. The properties of these objects we are interested
in are (1) sizes, (2) regularity, which represents the convexity of triangulations, (3) geometric shellings,
which are combinatorial topological properties but still expressing convexity, and (4) shellability, extend-
able shellability, vertex decomposability, which are combinatorial topological properties on incremental
construction. They are from basic to fine in this order. The properties become difficult to understand as
the dimension becomes higher. We studied the most fundamental cases: basic properties for rigid objects,
and fine properties for abstract objects. Four results among our studies are introduced. (See Chapter 1
for the sketch of this thesis.)

The first one is on sizes of decompositions. Dissections are decompositions in which simplices are not
required to intersect mnicely to form simplicial complexes. They make a superclass of triangulations. We
showed size difference between these two kinds of decompositions for 3-polytopes. We also gave bounds for
the size of dissections of 3-polytopes which are similar to the bounds known for triangulations. (Chapter
2)

The second result is on nonregular triangulations. We defined a graph representing the in_front/behind
order of the maximal dimensional simplices in a triangulation when viewed from a point. The triangulations
having some asymmetric cycle in this graph forms a subclass of nonregular triangulations. Thus, we gave
a combinatorial subclass of nonregular triangulations, which is of interest, and also studied them further
exploiting linear programming duality. (Chapter 3)

The third result is on combinatorial topological properties. Here, we studied geometric shellings,
shellings becoming line shellings in some combinatorially equivalent polytopes, of 3-polytopes. We showed
several sufficient conditions for a shelling to be a geometric shelling, which are of interest both in polytope
and graph theory. (Chapter 4)

The last result also is on combinatorial topological properties. The subject here is the difference
between incremental construction properties, namely, shellability, extendable shellability, and vertex de-
composability. By enumerating shellable nonpseudomanifolds of small size, we found smallest examples
showing the difference of these classes, and examples uncovering a relation which was not known. (Chapter
5)

An approach in this thesis was to use computers to generate and test examples to study combinatorial
geometric aspects of triangulations. We not only devised algorithms of our own, but also made use of

established techniques such as integer programming and convex hull computation. (Chapter 6)
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Chapter 1

Triangulations, their generalizations and

applications

The main results of this thesis are sketched in this section. The mathematical details are discussed
in Chapters 2 to 5. Here, we emphasize on applications leading to the problems we discuss. Our
results might give suggestions on designing algorithms for these applications.

Each section introduces one object from triangulations and their generalizations. We discuss
their applications and properties of interest, though restricting mainly to those subjects relevant
to our results. See Figure 1.1.

Properties become substantially difficult when the dimension is raised. In each dimension, we
analyze fundamental problems: basic properties for rigid objects and fine properties for abstract

objects. For basic terminology, see [46] [106].

properies X
basic fine
&
§ s s
S 065 &
S S §
§ & . &
IS WAY
RIS
Y &
A
SIS
s S sS
POl .
&3, $SIFEE &
&S Tses
FR g TFE g 8
425 triangulations in 3D ‘
N
dissections.
=2 in3D
2D surfaces through
pointsin 3D %
A v understood
triangulationsin 2D A known
- o Q ® inthisthesis
rigid & n . .
5 pseudo-triangulations ? not understood
&
oriented matroid
& triangulationsin 2D
FMs® N J
b ect ‘g,eooo‘ , maximal planar graphs °
OIS PSS o = 2-spheres
Q\O
&> simplicial complexes ®
& in2D
00\\;0
abstract

Figure 1.1: Triangulations, their generalizations and their properties.



1.1 Triangulations

1.1.1 Definitions and examples

Definition 1.1. Given points py,...,p, € R? and a d-dimensional (possibly nonconvez) polyhe-
dron including these points and with vertices among the points, a set of d-simplices with vertices
among these points is a triangulation if (1) any pair of d-simplices intersect at their (possibly

empty) face, and (2) the union of the d-simplices is equal to the polyhedron.

The representation of a polyhedron needs some arguments, but we skip them here. In some
situations (often in computational geometry) we are forced to use all the given points in the
triangulation, and in some other situations (often in combinatorial geometry) we are not. As an
example, all of the five triangulations of a pentagon with its vertices the point configuration is

given in Figure 1.2.

’s>
W

Figure 1.2: Triangulations of a pentagon.

1.1.2 Applications
Triangulations in 2D

Triangulations in dimension two give partitions of the given polygon, and are fundamental in
computational geometry [35] [46, Chapter 22]. Among important applications are Geometric In-
formation Systems or image processing. Extensive work has been done in this field. The Delaunay
triangulation for a given point configuration is known to possess various nice properties such as
maximizing the minimum angle. All triangulations of a given point configurations can be trans-
formed to each other by sequences of local changes called flips, which is convenient when optimizing

triangulations.

Triangulations in 3D

Triangulations in dimension three are also important, because objects surrounding us are of this
dimension. For example, mesh generation or Computer Aided Design are important applications

of triangulations.



Compared to dimension two, the case dimension three (or more) becomes much more com-
plicated, and a number of fundamental questions are still remaining unsolved. Let us list a few

facts:

e The number of triangles in triangulations in dimension two using all of the given points
is determined uniquely by the point configuration, however, there are cases the number of
tetrahedra in triangulations in dimension three vary for different triangulations even for the

same point configuration and the polyhedron.

Figure 1.3: Triangulations into three or two tetrahedra.

e There exists a nonconvex polyhedron, for example, Schénhardt’s polyhedron, which does not
have a triangulation (if points other than the vertices of the polyhedron cannot be used)
[46, Section 22.5]. Furthermore, deciding whether a given three dimensional (nonconvex)

polyhedron has a triangulation or not is NP-complete [85].

e Computing the minimal number of tetrahedra required in a triangulation of a 3-dimensional

(convex) polytope is NP-complete [6].

e It is not known whether all triangulations for a given point configuration and its convex hull
can be transformed to each other by sequences of flips, for the case d = 3,4,5. As mentioned

above, it is true for d = 2. It is known to be false for d = 6 [86].

1.1.3 Properties and questions
Size and complexity

By the size of a triangulation, we mean the number of d-simplices in it. As indicated above, the
size of triangulations in three or higher dimensions varies even for the same given set of points and
polyhedron. Thus, this size becomes a matter of question.

Computationally, it is important to keep this size small. The adjacency graph of a triangulation
is a graph with its vertices corresponding to the d-simplices in the triangulation and edges between
pairs of vertices corresponding to d-simplices sharing their facets. Finding a triangulation whose
size of this adjacency graph is small is also important.

Triangulations in 2D using all the given points have constant size. Also, their applications

often involve large number of points. Thus, it becomes important to care not merely the size but



more finer properties as complexity. Pseudo-triangulations (see Section A.1) are generalizations of

triangulations in 2D for such purpose.

In_front/behind view ordering of simplices

In computer graphics, understanding the in_front/behind order of the simplices in a triangulation

viewed from a specific point, as in the figure below, is fundamental [36].

s

N\

Figure 1.4: Cyclic in front/behind order of triangles viewed from a point.

Orderings for incremental construction

Orderings of d-simplices (or vertices) for incremental construction is important in the following
areas. The time and space complexity of computations in such applications depend on the ordering

of the d-simplices the computation is based on.

(1) The ordering is important in constructing the triangulation, or in computing some function
on the triangulated polyhedron as in mesh generation. In these cases, the coordinates of the

points in the triangulation are required.

(2) The ordering is important also in analyzing the morphology of the polyhedron. In this
case, the information only on the connection of the d-simplices (i.e. the information on the

underlying simplicial complex, see Section 1.5) might be sufficient.

Regularity

A triangulation of a d-dimensional convex polytope is regular if it can appear as the projection of
the lower faces of the boundary complex of a (d + 1)-dimensional convex polytope. The condition
of regularity means the “convexity” of the triangulation. For example, when a triangulation is
regular, we can find line shellings [18], special kinds of nice orderings of d-simplices for incremental
construction. The definition of regularity can be extended to nonconvex polyhedra: a triangulation
(of a nonconvex polyhedron) is regular if it forms a subset of some regular triangulation of a convex
polytope. An example of a nonregular triangulation is given below.

Regular triangulations altogether for a point configuration (and its convex hull) are forming
a polytopal structure described by the secondary polytope [44] [45]. This result implies that all

regular triangulations for a given point configuration can be transformed to each other by sequences



Figure 1.5: A nonregular triangulation.

of flips. In connection with Grobner bases, initial ideals for the affine toric ideal determined
by a point configuration correspond to the regular triangulations of the point configuration [99]
[100]. Regular triangulations are a generalization of the Delaunay triangulation well known in
computational geometry [35], and have also been used in this field too. Since regular triangulations
are connected by flips, we can perform optimization on triangulations by updating triangulations
locally by flips. Also, the regularity guarantees shellability enabling incremental construction of
the whole triangulation.

On the other hand, nonregular triangulations, known to be behaving differently from regular
triangulations, are not yet well understood. For example, the counterexample in d = 6 against all
triangulations being transformable by sequences of flips is a nonregular triangulation with no flips
[86].

1.1.4 Ouwur contribution

The most basic case of triangulations in dimension three are the triangulations of 3-dimensional
convex polytopes. Even for this case the size of triangulations are of questions. Also, finding
minimal (and maximal too probably) triangulations for 3-polytopes in general is computationally
intractable. We analyze minimal and maximal size triangulations for specific non-simplicial 3-
polytopes of interest: prisms, antiprisms, Archimedean solids, and combinatorial d-cubes (Theorem
2.2).

Nonregular triangulations are not understood well. We aim to put some insight into these
nonregular triangulations. The connection between nonregularity and the in_front/behind view
ordering was first investigated in [36]. We introduce a different in_front/behind view ordering,
restricted to d-simplices in the triangulation, which agrees better with the combinatorial structure
of triangulations such as adjacency graphs. We prove that triangulations having a cycle the reverse
of which is not a cycle in this in_front/behind order viewed from some point are forming a (proper)
subclass of nonregular triangulations. We use linear programming duality to investigate further

properties of nonregular triangulations in connection with this graph (Theorem 3.1).



1.2 Dissections

1.2.1 Definitions and examples

Definition 1.2. Given points py,...,p, € R? and a d-dimensional (possibly nonconvez) polyhe-
dron including these points and with vertices among the points, a set of d-simplices with vertices
among these points is a dissection if (1) any pair of d-simplices have no interior point in common,

and (2) the union of the d-simplices is equal to the polyhedron.

The representation of a polyhedron needs some arguments, but we skip them here. Dissections
form a superclass of triangulations. For points in general position (i.e. no d + 1 points included in

a hyperplane), these two classes become equal. Examples are shown in Figure 1.6.

Figure 1.6: Dissections of an octahedron. Only the left one is a triangulation.

Dissections are same as triangulations in that they partition the given polyhedron, but are
different in that they do not form simplicial complexes (see Section 1.5).
1.2.2 Applications
Volume computation

Computing the volume of a polyhedron is a basic operation in handling concrete objects [48].
Also, in some problems, the constraints of the problem define a polyhedron, and the number of
the solutions becomes the volume of the polyhedron [97]. Volume computation becomes important

also in such cases. (See Section 1.2.3 below for using dissections for volume computation.)

Hilbert bases

Dissections are related to the study of Hilbert bases and the hierarchy of covering properties for
polyhedral cones, which are relevant to algebraic geometry and integer programming (see [19] [41]
[89]).

Simplexity of the cube

The regular d-dimensional cube has been widely studied for its smallest dissections [24, Section

C9] [52] [55]. This receives the name of simplezity of the cube. This was motivated by the study



on fixed points. Since dissections include triangulations, there is chance a minimal dissection is

smaller than a minimal triangulation.

1.2.3 Properties and questions
Size

By the size of a dissection, we mean the number of d-simplices in it.

Since dissections, different from triangulations, do not form simplicial complexes, they become
less useful in computing or analyzing some information on the whole polyhedron. However, they
are useful enough in certain applications like volume computation. In such applications, it often
happens to be important to keep the size of the dissection small.

If there are dissections significantly smaller than triangulations, dissections become more useful,
compensating the drawback of not forming simplicial complexes. Thus, the difference of sizes
between dissections and triangulations becomes one of the main questions. Little has been known
on this difference. One thing known is the existence of 3-polytopes with size gap between minimal

dissections and minimal triangulations [5].

1.2.4 Our contribution

The first fundamental and interesting case to study the difference between dissections and trian-

gulations is the case of 3-polytopes. Our results are as follows:

e The gap between the size of a maximal dissection and a maximal triangulation can grow
linearly on the number of vertices, and this occurs already for a family of simplicial convex

3-polytopes (Corollary 2.4).

e There is a 3-polytope in which, simultaneously, the size of a minimal (maximal) dissection is

smaller (larger) than any minimal (maximal) triangulation (Proposition 2.5).

e We study how the mismatching regions, the polygonal mismatching parts of facets of tetra-

hedra, of dissections of 3-polytopes look like (Lemma 2.6).

e We prove lower and upper bounds on the size of dissections of 3-polytopes with respect to
the number of vertices (Proposition 2.7). Our proof relates the f-vector of a dissection with
that of some 3-ball.

1.3 2D surfaces through points in 3D

1.3.1 Definitions

Definition 1.3. Given points pi1,...,p, € R3, a set of triangles with vertices among these points
is a 2-dimensional surface if (1) any pair of triangles intersect at their (possibly empty) face, and

(2) the union of triangles including any vertex is homeomorphic to a 2-dimensional disc.



1.3.2 Applications
Model representation

Representing the boundary of a 3-dimensional object as a surface is fundamental in computer
graphics and solid modeling [20] [32, Section I.4]. The above definition of surfaces can directly be
extended to allow not only triangles but also squares or convex polygons, which appear in such
applications. Nice data structure for modeling, or the ordering of the components benefits fast

rendering, compression [56], etc.

Feature extraction

After representing a 3-dimensional object by a surface, it becomes important to analyze the shape
of the object [32, Section I.4]. Questions to be asked are the number of connected components,

tunnels, voids, pockets, etc. These are important also in molecular modeling [37].

3D surfaces in 4D space

A situation in one dimension higher, triangulated 3-dimensional surface in 4-dimensional space, also
have applications. For example, partitioning the 3-dimensional space with one more dimensional
of data (such as, temperature, pressure) leads to this problem. In this situation, rather than

recognizing the whole shape, queries on the data as a database might become of interest [62].

1.3.3 Properties and questions
Orderings for incremental construction

Nice orderings of triangles (or vertices) are important for manipulating surfaces. The time and
space complexity of such computations depend on the ordering of the triangles the computation is

based on. Applications can be classified by the data needed for computation.

(1) The ordering is important in constructing, rendering, compressing, and some topics of feature

extracting. In these cases, the coordinates of the points in the surface are required.

(2) The ordering is important also in extracting topological features [30]. In this case, the
information only on the connection of the triangles (i.e. the information on the underlying

simplicial complex, see Section 1.5) is sufficient.

We handle those of type (2).

1.3.4 Ouwur contribution

A 2-dimensional surface in 3-dimensional space has the structure of an abstract 2-dimensional
simplicial complex underlying it (forgetting the coordinates of the points). This level of simplicial
complexes has enough information to analyze the orderings of triangles (or vertices) for constructing

the surface incrementally. We study such orderings for simplicial complexes (see Section 1.5.4).



1.4 Balls, spheres

1.4.1 Definitions and examples

Balls and spheres are objects of topological level. A triangulation, a surface, or an oriented matroid
triangulation has a topological structure underlying it. In this (combinatorial) topological level, we
forget the coordinates of the points, but keep information on the “shape” of the object expressed

by how the components (e.g. d-simplices) are connected.

Definition 1.4. Let V' be a finite set. A collection A of subsets of V is a simplicial complex
onV,ifoc € A, 7 C o impliesT € A. We call A a d-ball (resp. a d-sphere) if the geometric
realization (i.e. the union of the convez hull of the subsets in A, after embedding the vertices in V.
in a sufficiently high dimensional space) is homeomorphic to the standard d-dimensional ball (resp.

standard d-dimensional sphere).
For example, for V' = {1,2, 3,4},
A = {123,124,134,234,12,13,14,23,24,34,1,2,3,4,0}

is a simplicial complex on V. As for notation, for example, 123 denotes {1,2,3}. It appears as the

boundary of a tetrahedra, and is a 2-sphere.

1.4.2 Applications
Undirected graphs of polytopes

The (undirected) graph of a polytope is a graph with the vertices corresponding to the vertices of
the polytope, and edges between vertices connected by an edge in the polytope. Steinitz’ theorem
says that an (undirected) graph is a graph of a 3-polytope if and only if it is simple, planar and
3-connected (see [106]). Furthermore, the face lattice of a 3-polytope is determined uniquely by the
graph. Any 2-sphere corresponds to a maximal planar graph and to a simplicial 3-polytope. (All
3-polytopes can be covered if we extend the definition of 2-spheres to allow not only triangular but
also polygonal faces.) Studies on 4-polytopes have been done recently [83], but it seems difficult
to extend Steinitz’ theorem to 4-polytopes [106].

Directed graphs of polytopes

A polytope and a (generic) vector in its space, define a directed graph. The underlying graph is
the graph of the polytope, but we direct the edges from a vertex with smaller inner product with
the vector to the vertex with larger inner product. Such kind of a graph is called a directed graph
of a polytope. This graph is important in linear programming, especially for simplex methods.
The characterization of directed graphs of 3-polytopes in graph theoretical terms has been done
recently [53][74].

The vector also defines a total order on the vertices of the polytope by sorting according to
the inner product with the vector (or sweeping along this direction). A total order of vertices of a

polytope which can appear like this for some combinatorially equivalent polytope and some vector



is called a polar geometric shelling. This total order has strong connection with abstract linear
programming [43], a generalization of linear programming. Examples of polytopes with some total
order of vertices satisfying a weaker condition of polar shelling, but not of the polar geometric
shelling are known [50] [93].

Directed graphs or total orders of vertices for 2-spheres correspond to the special case of sim-

plicial 3-polytopes.

Polytopality

As mentioned above, a 2-sphere always appears as the boundary of some simplicial 3-polytope.
However, 3-spheres do not necessarily appear as boundaries of 4-polytopes. Recently, polytopality,
the measurement how close a 3-sphere is to a boundary of a polytope, has been studied [63]. For
a sphere, appearing as a boundary of a polytope means convexity, and has relation with regularity

discussed in Section 1.1.3.
1.4.3 Properties and questions

Polar (geometric) shellings of 3-polytopes

As mentioned above, the characterization of directed graphs of 3-polytopes has been done recently
[63][74]. It would be interesting to study more concrete examples here. Also, characterizing polar
shelling and understanding the difference between polar shelling and polar geometric shelling must

be of interest.

1.4.4 Our contribution

For total orders of vertices of a graph of a 3-polytope, we characterize the weaker condition of being
a polar shelling in graph theoretical terms (Theorem 4.2). We also give some sufficient conditions
for polar geometric shellings, which might be of interest in polytope theory (Theorem 4.4). We
also show the example of a 3-polytope with smallest number of vertices having a polar shelling

which is not a polar geometric shelling (Example 4.7).

1.5 Simplicial complexes

1.5.1 Definitions and examples

A simplicial complex is a combinatorial structure underlying a triangulation, a surface, an oriented
matroid triangulation, a ball, or a sphere. In this combinatorial level, we forget the coordinates of
the points, or the topological restriction of the whole object, and in the most abstract level, only

observe the information how the components are connected.

Definition 1.5. Let V be a finite set. A collection A of subsets of V is a simplicial complex on

V,ifo € A, T C o implies T € A.

See Section 1.4.1 for an example.
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1.5.2 Applications
In computational geometry

Simplicial complexes are of fundamental level, and appear, even unnoticed, in various scenes in
computational geometry such as (Delaunay) triangulations [35], or a-shapes [38]. Considering sim-
plicial complexes in general might be too broad, but focusing on this level, keeping the restriction

of the original setting might lead to fruitful results in computational geometry.

In combinatorics

Simplicial complexes are fundamental in combinatorial geometry and in algebra. The Stanley-
Reisner ring, a ring defined for a simplicial complex, bridges between these two fields [97]. The
upper bound theorem bounding the number of faces of a sphere [95], and the g-theorem character-

izing the face number of simplicial polytopes [8] [9] [96] were accomplished through this approach.

1.5.3 Properties and questions
Orderings for incremental construction

In computational geometry, nice orderings for incremental construction of triangulations or sur-
faces are important for rendering, compression, feature extraction, etc. Nice orderings for such
applications can be studied in the most fundamental level of simplicial complexes.

In combinatorics, nice properties for incremental construction of simplicial complexes often
have nice counterparts in the algebra side. For example, shellability implies Cohen-Macaulayness
[97], or has an equivalent counterpart in algebra [34] [92].

Hierarchy of incremental construction properties has been defined and applications of such
properties in other fields have been studied. However, some basic questions such as the difference
between these properties, or how minimal examples look like are not answered yet. Thus, studying

small concrete examples is important.

1.5.4 Our contribution

We consider three properties describing how nicely a simplicial complex can be constructed incre-
mentally. Shellability means there is a nice ordering of d-simplices to construct the whole simplicial
complex by pasting d-simplices one by one. Eztendable shellability is a stronger property requiring
that we do not get stuck during this process of pasting d-simplices. Vertex decomposability means
that we can construct the whole simplicial complex by adding vertices one by one. When adding a
vertex, we might be able to add more than one new d-simplices. Extendable shellability or vertex
decomposability implies shellability.

We study minimal examples (in dimension two) showing the difference of these classes:

e We found minimal examples of shellable but not extendably shellable simplicial complexes,

which are smaller than those previously known (Theorem 5.1).

11



(Theorem 5.2).

We also give new examples of shellable but not vertex decomposable simplicial complexes

An extendably shellable but not vertex decomposable example is also shown. This indicate

that neither extendable shellability nor vertex decomposability implies the other (Corollary

5.3).

Theorem 5.21).

1.6 Overview

Some analysis on such minimal examples is also given (Proposition 5.14).

We also give a rather efficient algorithm for enumerating these objects (Algorithm 5.20,

The objects we analyze in this thesis are triangulations and their generalizations. We are interested

in three kinds of their properties:

e size and complexity (Chapter 2),

e regularity and view graph (Chapter 3), and

e total order for incremental construction (Chapters 4, 5).
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Figure 1.7: Overview of our main results

Size and complezity are the most fundamental combinatorial properties. Once we understand

the size, the number of components, our next interest becomes the relations between the compo-

nents. Among such relations, we focus on total orders for incremental construction. Analysis on

such total orders are important, because they lead to results on size and complexity by providing

frameworks for mathematical inductions.

The combinatorial theory of convex polytopes forms the basis of the combinatorial theory of

triangulations. The most important theorem in combinatorics of polytopes is the upper bound

theorem stating the maximal possible number of faces of polytopes with given number of vertices
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[73]. This theorem on size was first proved using shelling [18], a total order for incremental
construction of the boundary of a polytope.

Triangulations are similar to boundaries of polytopes in that they form simplicial complexes.
However, theorems on (boundaries of) polytopes do not automatically generalize to theorems on
triangulations, because triangulations might not be “convex” as polytopes. Indeed, the regular
subclass of triangulations is the ones corresponding to (simplicial) polytopes and having convexity.
When trying to generalize a theorem on polytopes to triangulations, it is important to distinguish
what regularity means.

There have been several nice results on regular triangulations, but nonregular triangulations,
the nonconvex ones, are still not understood. The third property we are interested in is the relation
between (non)regularity and view graph.

One of the most important applications of polytope theory is linear programming, and the du-
ality of linear programming is an important topic there. Our new method to understand regularity
by view graph, uses linear programming duality to bridge the two.

Finally, we summarize our main results according to the three properties. Consult Chapters 2

to 5 for details.
e We analyze the following size or complexity:

— the sizes of triangulations of specific polytopes (Theorem 2.2)
* 3-polytopes as prisms, antiprisms
* combinatorial d-cubes

— the size gap between dissections and triangulations
* the maximal side gap for 3-polytopes (Corollary 2.4)

x the lower and upper bounds for the size of dissections of 3-polytopes (Proposition
2.7)

e As for regularity and view graph,

— We study nonregular triangulations using view graphs:
* A view graph describing in_front/behind relation viewed from a point is defined.

* A triangulations having a contradicting cycle in a view graph view from some point
becomes nonregular (Theorem 3.1).

*x However, there is an example showing the reverse implication fails (Examples 3.6).
e As for total orders for incremental construction,
— We study unknown relations between total orders for incremental construction, shella-

bility, extendable shellability and vertex decomposability.

* We show examples showing differences of these classes, including minimal examples
(Theorem 5.1, 5.2, Corollary 5.3).
* We study relations among shellable but not extendably shellable examples, and

showed properties of minimal such examples (Proposition 5.14).

13



* We propose an efficient algorithm for enumerating shellable 2-nonpseudomanifolds
(Algorithm 5.20, Theorem 5.21).

— Incremental construciton orders for 2-spheres are also studied.

* Shellability is characterized (Theorem 4.2).

* Interesting sufficient condtions for geometric shellability are given (Theorem 4.4).
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Chapter 2

Extremal properties for dissections of convex

3-polytopes

A dissection of a convex d-polytope is a partition of the polytope into d-simplices whose vertices
are among the vertices of the polytope. Triangulations are dissections that have the additional
property that the set of all its simplices forms a simplicial complex. The size of a dissection is
the number of d-simplices it contains. This chapter compares triangulations of maximal size with
dissections of maximal size. We also exhibit lower and upper bounds for the size of dissections of a
3-polytope and analyze extremal size triangulations for specific non-simplicial polytopes: prisms,
antiprisms, Archimedean solids, and combinatorial d-cubes. (Joint work with Jesis A. De Loera

and Francisco Santos [33])



2.1 Imtroduction

Let A be a point configuration in R? with its convex hull conv(A) having dimension d. A set of
d-simplices with vertices in A is a dissection of A if no pair of simplices has an interior point in
common and their union equals conv(.A). A dissection is a triangulation of A if in addition any pair
of simplices intersects at a common face (possibly empty). The size of a dissection is the number
of d-simplices it contains. We say that a dissection is mismatching when it is not a triangulation
(i.e. it does not form a simplicial complex). In this chapter we study mismatching dissections of
maximal possible size for a convex polytope and compare them with maximal triangulations. This
investigation is related to the study of Hilbert bases and the hierarchy of covering properties for
polyhedral cones which is relevant in Algebraic Geometry and Integer Programming (see [19] [41]
[89]). Maximal dissections are relevant also in the enumeration of interior lattice points and its
applications (see [4] [59] and references there).

It was first shown by Lagarias and Ziegler that dissections of maximal size turn out to be, in
general, larger than maximal triangulations, but their example uses interior points [68]. Similar
investigations were undertaken for mismatching minimal dissections and minimal triangulations of
convex polytopes [5]. In this chapter we augment previous results by showing that it is possible to
have simultaneously, in the same 3-polytope, that the size of a mismatching minimal (maximal)
dissection is smaller (larger) than any minimal (maximal) triangulation. In addition, we show
that the gap between the size of a mismatching maximal dissection and a maximal triangulation
can grow linearly on the number of vertices and that this occurs already for a family of simplicial
convex 3-polytopes. A natural question is how different are the upper and lower bounds for the
size of mismatching dissections versus those bounds known for triangulations (see [84]). We prove
lower and upper bounds on their size with respect to the number of vertices for dimension three
and exhibit examples showing that our technique of proof fails already in dimension four. Here is

the first summary of results:

Theorem 2.1. 1. There ezists an infinite family of convex simplicial 3-polytopes with increas-
ing number of vertices whose mismatching mazimal dissections are larger than their mazimal

triangulations. This gap is linear in the number of vertices (Corollary 2.4).
2. (a) There exists a lattice 3-polytope with 8 vertices containing no other lattice point other
than its vertices whose mazximal dissection is larger than its mazimal triangulations.

(b) There exists a 3-polytope with 8 vertices for which, simultaneously, its minimal dissection
is smaller than minimal triangulations and mazimal dissection is larger than mazimal

triangulations.

(Proposition 2.5)

3. If D is a mismatching dissection of a 3-polytope with n vertices, then the size of D is at least

n — 2. In addition, the size of D is bounded above by (n;2) (Proposition 2.7).

A consequence of our third point is that the result of [5], stating a linear gap between the size

of minimal dissections and minimal triangulations, is best possible. The results are discussed in
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Sections 2.2 and 2.3.
The last section presents a study of maximal and minimal triangulations for combinatorial
d-cubes, three-dimensional prisms and anti-prisms, as well as other Archimedean polytopes. The

following theorem and table summarize the main results:

Theorem 2.2. 1. There is a constant ¢ > 1 such that for every d > 3 the mazimal triangulation

among all possible combinatorial d-cubes has size at least c?d! (Proposition 2.10).

2. For a three-dimensional m-prism, in any of its possible coordinatizations, the size of a min-
imal triangulation is 2m — 5+ [3]. For an m-antiprism, in any of its possible coordinatiza-
tions, the size of a minimal triangulation is 3m —5 (Proposition 2.12). The size of a mazimal
triangulation of an m-prism depends on the coordinatization, and in certain natural cases it

is (m? +m — 6)/2 (Proposition 2.13).

3. The following table specifies sizes of the minimal and mazimal triangulations for some Pla-
tonic and Archimidean solids. These results were obtained via integer programming calcula-
tions using the approach described in [31]. All computations used the canonical symmetric
coordinatizations for these polytopes [23]. The number of vertices is indicated in parenthesis

(Remark 2.14):

p |Tmin (P)| | [Tmax(P)|
Icosahedron (12) 15 20
Dodecahedron (20) 23 36
Cuboctahedron (12) 13 17
Icosidodecahedron (30) 45 ?
Truncated Tetrahedron (12) 10 13
Truncated Octahedron (24) 27 ?
Truncated Cube (24) 25 48
Small Rhombicuboctahedron (24) 35 ?
Pentakis Dodecahedron (32) 54 ?
Rhombododecahedron (14) 12 21

Table 2.1: Sizes of extremal triangulations of Platonic and Archimidean solids.

2.2 Maximal dissections of 3-polytopes

We introduce some important definitions and conventions: We denote by @,,, a convex m-gon with
m an even positive integer. Let viv; and ujus be two edges parallel to @,,, orthogonal to each
other, on opposite sides of the plane containing @Q,,, and such that the four segments v;u; intersect
the interior of @),,. We suppose that v;vs and u;us are not parallel to any diagonal or edge of
@:m- The convex hull P,, of these points has m + 4 vertices and it is a simplicial polytope. We
will call north (respectively south) vertex of @,,, the one which maximizes (respectively minimizes)
the scalar product with the vector vy — v;. Similarly, we will call east (west) the vertex which
maximizes (minimizes) the scalar product with us — u;. We denote these four vertices n, s, e and

w, respectively. See Figure 2.1.

17



N
W<1—E
w

S

Figure 2.1: North, South, East, and West vertices.

We say that a directed path of edges inside Q,, is monotone in the direction v1vy (respectively
ujus) when the vertices of the path appear in the path following the same order given by the
scalar product with vs — v; (respectively us — u1). An equivalent formulation is that any line
orthogonal to vivs cuts the path in at most one point. We remark that by our choice of v;v, and
uyug all vertices of @, are ordered by the values of their scalar products with vy — v; and also
with respect to u2 — ui. In the same way, a sequence of vertices of Q,, is ordered in the direction
of vivy (respectively wjus), if the order is the same as the one provided by using the values of
the scalar products of the points with the vector v — v; (respectively uz — u;). Consider the two
orderings induced by the directions of vyv; and wjus on the set of vertices of @,,. Let us call
horizontal (respectively vertical) any edge joining two consecutive vertices in the direction of v1vs
(respectively of ujus). As an example, if @,, is regular then the vertical edges in @, form a zig-zag

path as shown in Figure 2.2.

Figure 2.2: The minimal monotone path (middle) and the maximal monotone path made by the

vertical edges (right) in the direction u;u,.

Our examples in this section will be based on the following observation and are inspired by a
similar analysis of maximal dissections of dilated empty lattice tetrahedra in R® by Lagarias and
Ziegler [68]: Let R,, be the convex hull of the m + 2 vertices consisting of the m-gon @, and vy, v.
R,, is exactly one half of the polytope P,,. Consider a triangulation Ty of Q,, and a path T' of
edges of Ty monotone with respect to the direction u;uz. Observe that I' divides Tp in two regions,

which we will call the “north” and the “south”. Then, the following three families of tetrahedra
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form a triangulation T of R,,: the edges of I' joined to the edge vivs; the southern triangles of

To joined to v;; and the northern triangles of Ty joined to vs (see Figure 2.3). Moreover, all the

Figure 2.3: Three types of tetrahedra in R,,.

triangulations of R,, are obtained in this way: Any triangulation 7" of R,, induces a triangulation
To of Q. The link of v1v2 in T is a monotone path of edges with respect to ujus contained in T
and it divides Ty in two regions, joined respectively to v; and vs.

Using the Cayley trick, one can also think of the triangulations of R,, as the fine mixed
subdivisions of the Minkowski sum @,, + v1v2 (see [54] and references within).

The size of a triangulation of R,, equals m —2+|T'|, where |T'| is the number of edges in the path
T. There is a unique minimal path in @, of length one (Figure 2.2, middle) and a unique maximal
path of length m—1 (Figure 2.2, right). Hence the minimal and maximal triangulations of R,, have,
respectively, m — 1 and 2m — 3 tetrahedra. The maximal triangulation is unique, but the minimal
one is not: after choosing the diagonal in I" the rest of the polygon @, can be triangulated in many
ways. From the above discussion regarding R,, we see that we could independently triangulate
each of the two halves of P, with any number of tetrahedra from m — 1 to 2m — 3. Hence, P,,
has dissections of sizes going from 2m — 2 to 4m — 6. Among the triangulations of P,,, we will
call halving triangulationsthose that triangulate the two halves of P,,. Equivalently, the halving

triangulations are those which do not contain any of the four edges v;u;.

Proposition 2.3. Let P, be as described above, with Q,, being a reqular m-gon. No triangulation
of P,, has more than 777" + 1 tetrahedra. On the other hand, there are mismatching dissections of

P,, with 4m — 6 tetrahedra.

Proof. Let T be a triangulation of P,,. It is an easy application of Euler’s formulas for the 3-ball
and 2-sphere that the number of tetrahedra in a triangulation of any 3-ball without interior vertices
equals the number of vertices plus interior edges minus three (such formula appears for instance
in [39]). Hence our task is to prove that T has at most 577” interior edges. For this, we classify
the interior edges according to how many vertices of @,, they are incident to. There are only four
edges not incident to any vertex of Q,, (the edges v;u;, 1,5 € {1,2}). Moreover, T contains at
most m — 3 edges incident to two vertices of @, (i.e. diagonals of @,,), since in any family of more
than m — 3 such edges there are pairs which cross each other. Thus, it suffices to prove that T

contains at most 2 — 1 edges incident to just one vertex of Q,, i.e. of the form v;p or u;p with

2
P € Qn.

19



Let p be any vertex of Q,,. If p equals w or e then the edges pv; and pvs are both in the
boundary of P,,; for any other p, exactly one of pv; and pvs is on the boundary and the other one
is interior. Moreover, we claim that if pv; is an interior edge in a triangulation T, then the triangle
pv1v2 appears in T'. This is so because there is a plane containing pv; and having v3_; as the unique
vertex on one side. At the same time the link of pv; is a cycle going around the edge. Hence, v3_;
must appear in the link of pv;. It follows from the above claim that the number of interior edges
of the form pv; in T equals the number of vertices of @, other than w and e in the link of v;v5. In
a similar way, the number of interior edges of the form pu; in T equals the number of vertices of
Q. other than n and s in the link of ujus. In other words, if we call T, = linky(viv3) N @4, and
T, = linkr(uiu2) N Qm (the u, v in the index and of the vertices are reversed, because in this way
T, is monotone with respect to ujuz, and I', with respect to v1v2), then the number of interior
edges in T incident to exactly one vertex of @, equals | vertices(T',)| + | vertices(I',)| — 4. Our goal
is to bound this number. As an example, Figure 2.4 shows the intersection of (),, with a certain
triangulation of P, (m = 12). The link of v;v, in this triangulation is the chain of vertices and
edges wabuinusce (the star of v1vy is marked in thick and grey in the figure). I', consists of the
chains wab and ce and the isolated vertex m. In turn, the link of ujus is the chain nv;s and T,

consists of the isolated vertices n and s.

Figure 2.4: Illustration of the proof of Proposition 2.3.

Observe that ', has at most three connected components, because it is obtained by removing
from link7(u;us) (a path) the parts of it incident to v; and vs, if any. Each component is monotone
in the direction of v;v2 and the projections of any two components to a line parallel to v;v2 do
not overlap. The sequence of vertices of @),, ordered in the direction of v,vs, can have a pair of
consecutive vertices contained in I', only where there is a horizontal edge in I, or in the at most
two discontinuities of T',,.

We denote npor the number of horizontal edges in I', and n},,. this number plus the number
of discontinuities in I', (hence n},,, < npor +2). Every non-horizontal edge of I, produces a jump

of at least two in the v;ve-ordering of the vertices of P,,, hence we have

I
m—1-—mn; .
2

Analogously, and with the obvious similar meaning for n,e.; and n

|vertices(Fv)| -1- n;wr S

!
vert?
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i m_l_nvert

| vertices(T'y)| — 1 —n,,; < 5

Since I', UT", can be completed to a triangulation of @,,, and exactly four non-interior edges of

@ are horizontal or vertical, we have npor +nyert < (Mm—3)+4 =m+1,ie n} . +n,,.., <m+5.

Hence,

<

=7+3.

2m +2+n/ n'
| vertices(T'y)| + | vertices(T',)| < { + 2+ Npor + vertJ

3m + 7 3m
2

Thus, there are at most 37’" — 1 interior edges in T' of the form pv; or pu; and at most 577”

interior edges in total, as desired. O
Corollary 2.4. The polytope P,, described above has the following properties:

o It is a simplicial 3-polytope with m + 4 vertices.

o Its mazimal dissection has at least 4m — 6 tetrahedra.

o Its mazimal triangulation has at most 777" + 1 tetrahedra.

In particular, the gap between sizes of the mazimal dissection and mazimal triangulation is linear

on the number of vertices.

Three remarks are in order: First, the size of the maximal triangulation for P,, may depend on
the coordinates or, more specifically on which diagonals of @,,, intersect the tetrahedron v;vou;us.
Second, concerning the size of the minimal triangulation of P,,, we can easily describe a triangu-
lation of P, with only m + 5 tetrahedra: let the vertices n, s, e and w be as defined above (see
Figure 2.1) and let us call northeast, northwest, southeast and southwest the edges in the arcs
ne, nw, se and sw in the boundary of @),,,. Then, the triangulation consists of the five tetrahedra
V12U U2, V1V2ULW, V1V2U2€, V1U1U2S and veuiuan (shown in the left part of Figure 2.5) together
with the edges vous, voui, vius and vyu; joined, respectively, to the northeast, northwest, south-
east and southwest edges of @,,. The right part of Figure 2.5 shows the result of slicing through
the triangulation by the plane containing the polygon @,,.

Finally, although the corollary above states a difference between maximal dissections and max-
imal triangulations only for P,, with m > 14, experimentally we have observed there is a gap
already for m = 8. Now we discuss two other interesting examples. The following proposition

constitutes the proof of Theorem 2.1 (2).
Proposition 2.5. 1. Consider the following eight points in R3:

e The vertices s = (0,0,0), e = (1,0,0), w = (0,1,0) and n = (1,1,0) of a square in the
plane z = 0.

e The vertices v = (—1,0,1) and vy = (1,1,1) of a horizontal edge above the square, and

o The vertices uy = (0,1, —1) and uz = (2,0,—1) of a horizontal edge below the square.
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Figure 2.5: For the triangulation of P, with m + 5 tetrahedra, its five central tetrahedra (left)
and the intersection of the triangulation with the polygon @, (right) are shown. The four interior

vertices are the intersection points of the edges vyu;, v1u2, vau; and vous with the plane containing

Qm-

These eight points are the vertices of a polytope P whose only integer points are precisely its

eight vertices and with the following properties:

(a) Its (unique) mazimal dissection has 12 tetrahedra. All of them are unimodular, i.e. they

have volume 1/6.

(b) Its (several) mazimal triangulations have 11 tetrahedra.

2. For the 3-polytope with vertices u; = (1,0,0), w = (1,0,1), v; = (-1,0,0), s = (-1,0,—1),
v2 =(0,1,1), n = (1,1,1), us = (0,1,-1), e = (—1,1, —1), the sizes of its (unique) minimal
dissection and (several) minimal triangulations are 6 and 7 respectively, and the sizes of its

(several) mazimal triangulations and (unique) mazimal dissection are 9 and 10 respectively.

Proof. The polytopes constructed are quite similar to P; constructed earlier except that Q4 is
non-regular (in part 2) and the segments u;us and v,v, are longer and are not orthogonal, thus
ending with different polytopes. The polytopes are shown in Figure 2.6. Figure 2.7 describes a
maximal dissection of each of them, in five parallel slices. Observe that both polytopes have four
vertices in the plane y = 0 and another four in the plane y = 1. Hence, the first and last slices in
parts (a) and (b) of Figure 2.7 completely describe the polytope.

1. The vertices in the planes y = 0 and y = 1 form convex quadrangles whose only integer
points are the four vertices. This proves that the eight points are in convex position and that the
polytope P contains no integer point other than its vertices. Let us now prove the assertions on
maximal dissections and triangulations of P:

(a) Consider the paths of length three I', = {esnw} and T, = {sewn}, which are monotone

respectively in the directions orthogonal to viv2 and ujus. Using them, we can construct two
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Figure 2.7: Five 2-dimensional slices of the maximal dissections of the polytopes in Proposition

2.5. The first and last slices are two facets of the polytopes containing all the vertices.

triangulations of size five of the polytopes conv(nsewvivz) and conv(nsewuiuz), respectively. But
they do not fill P completely. There is space left for the tetrahedra swwv;u; and envauz. This
gives a dissection of P with twelve tetrahedra. All the tetrahedra are unimodular, so no bigger
dissection is possible.

(b) A triangulation of size 11 can be obtained using the same idea as above, but with paths T,
and Iy, of lengths three and two respectively, which can be taken from the same triangulation of
the square nswe.

To prove that no triangulation has bigger size, it suffices to show that P does not have any
unimodular triangulation. Unimodularity means all tetrahedra have volume 1/6. We start by
recalling a well-known fact (see Corollary 4.5 in [90]). A lattice tetrahedron has volume 1/6 if
and only if each of its vertices v lies in a consecutive lattice plane parallel to the supporting plane
of the opposite facet to v. Two parallel planes are said to be consecutive if their equations are
ar +by+cz=dand ax +by+cz=d—1.

Suppose that T is a unimodular triangulation of P. We will first prove that the triangle u;uze
isin T'. The triangular facet u;uss of P, lying in the hyperplane z +2y+22z = 0, has to be joined to

a vertex in the plane x + 2y + 2z = 1. The two possibilities are e and v;. With the same argument,
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if the tetrahedron ujussv; is in T, its facet wjuzv;, which lies in the hyperplane 2z + 4y + 3z = 1,
will be joined to a vertex in 2z + 4y + 3z = 2, and the only one is e. This finishes the proof that
ujuge is a triangle in 7. Now, ujuse is in the plane z + 2y + z = 1 and must be joined to a vertex
inz+2y+z=2,ie. tow. Hence ujusew is in T and, in particular, T' uses the edge ew. P is
symmetric under the rotation of order two on the axis {z =0,z = %} Applying this symmetry to
the previous arguments we conclude that T' uses the edge ns too. But this is impossible since the
edges ns and ew cross each other.

2. This polytope almost fits the description of Py, except for the fact that the edges viu1, vous
intersect the boundary and not the interior of the planar quadrangle nsew. With the general
techniques we have described, it is easy to construct halving dissections of this polytope with sizes
from 6 to 10. Combinatorially, the polytope is a 4-antiprism. Hence, Proposition 2.12 shows that
its minimal triangulation has 7 tetrahedra. The rest of the assertions in the statement were proved
using the integer programming approach proposed in [31], which we describe in Remark 2.14. We
have also verified them by enumerating all triangulations [82] [105]. It is interesting to observe
that if we perturb the coordinates a little so that the planar quadrilateral u;v,use becomes a
tetrahedron with the right orientation and without changing the face lattice of the polytope, then
the following becomes a triangulation with ten tetrahedra: {ujusse, ujusevy, ujusviw, ujuswn,

Vi1v2€n, v1U2NW, U1V18€, V1U2€W, U2WNE, vlwne}. O

2.3 Bounds for the size of a dissection

Let D be a dissection of a d-polytope P. Say two (d — 1)-simplices S; and Sy of D intersect
improperly in a (d—1)-hyperplane H if both lie in H, are not identical, and they intersect with non-
empty relative interior. Consider the following auxiliary graph: take as nodes the (d — 1)-simplices
of a dissection, and say that two (d — 1)-simplices are adjacent if they intersect improperly in
certain hyperplane. A mismatched region is the subset of R? that is the union of (d — 1)-simplices
over a connected component of size larger than one in such a graph. Later, in Proposition 2.9 we
will show some of the complications that can occur in higher dimensions.

Define the simplicial complez of a dissection as all the simplices of the dissection together with
their faces, where only faces that are identical (in R?) are identified. This construction corresponds
intuitively to an inflation of the dissection where for each mismatched region we move the two
groups of (d — 1)-simplices slightly apart leaving the relative boundary of the mismatched region
joined. Clearly, the simplicial complex of a dissection may be not homeomorphic to a ball.

The deformed d-simplices intersect properly, and the mismatched regions become holes. The

numbers of vertices and d-simplices do not change.

Lemma 2.6. All mismatched regions for a dissection of a convex 3-polytope P are convex poly-
gons with all vertices among the vertices of P. Distinct mismatched regions have disjoint relative

interiors.

Proof. Let ) be a mismatched region and H the plane containing it. Since a mismatched region

is a union of overlapping triangles, it is a polygon in H with a connected interior. If two triangles
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forming the mismatched region have interior points in common, they should be facets of tetrahedra
in different sides of H. Otherwise, the two tetrahedra would have interior points in common,
contradicting the definition of dissection. Triangles which are facets of tetrahedra in one side of H
cover (). Triangles coming from the other side of H also cover Q.

Now, take triangles coming from one side. As mentioned above, they have no interior points
in common. Their vertices are among the vertices of the tetrahedra in the dissection, thus among
the vertices of the polytope P. Hence, the vertices of the triangles are in convex position, thus
the triangles are forming a triangulation of a convex polygon in H whose vertices are among the
vertices of P.

For the second claim, suppose there were distinct mismatched regions having an interior point
in common. Then their intersection should be an interior segment for each. Let @ be one of the
mismatched regions. It is triangulated in two different ways each coming from the tetrahedra in
one side of the hyperplane. The triangles in either triangulation cannot intersect improperly with
the interior segment. Thus the two triangulations of () have an interior diagonal edge in common.
This means the triangles in @) consists of more than one connected components of the auxiliary

graph, contradicting the definition of mismatched region. O

Proposition 2.7. 1. The size of a mismatching dissection D of a convex 3-polytope with n

vertices is at least n — 2.

n—2) .

2. The size of a dissection of a 3-polytope with n vertices is bounded from above by ( 2

Proof. (1) Do an inflation of each mismatched region. This produces as many holes as mismatched
regions, say m of them. Each hole is bounded by two triangulations of a polygon. This is guaranteed
by the previous lemma. Denote by k; the number of vertices of the polygon associated to the i-th
mismatched region. In each of the holes introduce an auxiliary interior point. The point can be
used to triangulate the interior of the holes by filling in the holes with the coning of the vertex
with the triangles it sees. We now have a triangulated ball.

Denote by | D| the size of the original dissection. The triangulated ball has then |D|+Y_." , 2(k;—
2) tetrahedra in total. The number of interior edges of this triangulation is the number of interior
edges in the dissection, denoted by e;(D), plus the new additions, for each hole of length k; we
added k; interior edges. In a triangulation 7' of a 3-ball with n boundary vertices and n' interior
vertices, the number of tetrahedra |T'| is related to the number of interior edges e; of T' by the
formula: |T| = n+e; —n' — 3. The proof is a simple application of Euler’s formula for triangulated
2-spheres and 3-balls and we omit the easy details.

Thus, we have the following equation:

DI+ 2(ki—2) =n+e(D)+ > ki—m-—3.
=1

i=1
This can be rewritten as |D| = n + e;(D) — Y., k; + 3m — 3. Taking into account that e;(D) >
> 1 2(k; — 3) (because diagonals in a polygon are interior edges of the dissection), we get an

inequality
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m
ID| >n+> ki—3m-3.
i=1

Finally note that in a mismatching dissection we have m > 1 and k; > 4. This gives the desired
lower bound.

(2) Now we look at the proof of the upper bound on dissections. Given a 3-dissection, we add
tetrahedra of volume zero to complete to a triangulation with flat simplices that has the same
number of vertices. One can also think we are filling in the holes created by an inflation with
(deformed) tetrahedra.

The lemma states that mismatched regions were of the shape of convex polygons. The 2-
simplices forming a mismatched region were divided into two groups (those becoming apart by an
inflation). The two groups formed different triangulations of a convex polygon, and they had no
interior edges in common. In this situation, we can make a sequence of flips (see [70]) between the
two triangulations with the property that any edge once disappeared does not appear again (see

Figure 2.8). We add one abstract, volume zero tetrahedron for each flip, and obtain an abstract

o>
== =

S Ay

triangulation of a 3-ball.

Figure 2.8: Filling in holes with tetrahedra according to flips.

The triangulation with flat simplices we created is a triangulated 3-ball with n vertices. By
adding a new point in a fourth dimension, and coning from the boundary 2-simplices to the point,
we obtain a triangulated 3-sphere containing the original 3-ball in its boundary. From the upper
bound theorem for spheres (for an introduction to this topic see [106]) its size is bounded from
above by the number of facets of a cyclic 4-polytope minus 2n — 4, the number of 2-simplices
in the boundary of D. The 4-dimensional cyclic polytope with n 4+ 1 vertices is well-known to
have (n + 1)(n — 2)/2 facets (see [49, page 63]), which completes the proof after a trivial algebraic

calculation. O

Open problem 2.8. What is the upper bound for sizes of dissections of d-dimensional polytopes
with d > 4%

In our proof of Proposition 2.7 we built a triangulated PL-ball from a three-dimensional dis-
section, using the flip connectivity of triangulations of a convex n-gon. Unfortunately the same
cannot be applied in higher dimensions as the flip connectivity of triangulations of d-polytopes is
known to be false for convex polytopes in general [86]. But even worse, the easy property we used

from Lemma 2.6 that mismatched regions are convex polyhedra fails in dimension d > 4.



Proposition 2.9. The mismatched regions of a dissection of a convez 4-polytope can be non-convex

polyhedra.

Proof. The key idea is as follows: suppose we have a 3-dimensional convex polytope P and two
triangulations 77 and T5 of it with the following properties: removing from P the tetrahedra that
Ty and T have in common, the rest is a non-convex polyhedron P’ such that the triangulations
T] and T; of it obtained from T; and T> do not have any interior 2-simplex in common (actually,
something weaker would suffice: that their common interior triangles, if any, do not divide the
interior of the polytope).

In these conditions, we can construct the dissection we want as a bipyramid over P, coning T
to one of the apices and T, to the other one. The bipyramid over the non-convex polyhedron P’
will be a mismatched region of the dissection.

For a concrete example, start with Schénhardt’s polyhedron whose vertices are labeled 1,2, 3 in
the lower face and 4, 5,6 in the top face. This is a non-convex polyhedron made, for example, by
twisting the three vertices on the top of a triangular prism. Add two antipodal points 7 and 8 close
to the “top” triangular facets (those not breaking the quadrilaterals see Figure 2.9). For example,
take as coordinates for the points 1 = (10,0, 0), 2 = (—6,8,0), 3 = (—6,—8,0), 4 = (10, 0.1, 10),
5=(-6.1,8,10), 6 = (-5.9,-8.1,10), 7 = (0,0,10.1), 8 = (0,0, —0.1).

Figure 2.9: The mismatched region of a four-dimensional dissection.

Let P’ be this non-convex polyhedron and let 7] = {1278, 1378, 2378, 1247, 2457, 2357, 3567,
1367, 1467} and Ty = {4578, 4678, 5678, 1248, 2458, 2358, 3568, 1368, 1468}. T| cones vertex 7 to
the rest of the boundary of P’, and T vertex 8. Any common interior triangle of Tj and T3 would
use the edge 78. But the link of 78 in T contains only the points 1, 2 and 3, and the link in T}
contains only 4, 5 and 6.

Let P be the convex hull of the eight points, and let 77 and T, be obtained from 7| and T3 by
adding the three tetrahedra 1245, 2356 and 1346. |
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2.4 Optimal dissections for specific polytopes

The regular cube has been widely studied for its smallest dissections [52] [55]. This receives the

name of simplexity of the cube. In contrast, because of the type of simplices inside a regular

d-cube, a simple volume argument shows that the maximal size of a dissection is d!, the same as

for triangulations. On the other hand, we know that the size of the maximal triangulation of a
combinatorial cube can be larger than that: For example, the combinatorial 3-cube obtained as
the prism over a trapezoid (vertices on a parabola for instance) has triangulations of size 7. Figure
2.10 shows a triangulation with 7 simplices for those coordinatizations where the edges AB and
GH are not coplanar. The tetrahedron ABGH splits the polytope into two non-convex parts, each
of which can be triangulated with three simplices. To see this, suppose that our polytope is a very
small perturbation of a regular 3-cube. In the regular cube, ABGH becomes a diagonal plane
which divides the cube into two triangular prisms ABCDGH and ABEFGH. In the non-regular
cube, the diagonals AH and BG, respectively, become non-convex. Any pair of triangulations of
the two prisms, each using the corresponding diagonal, together with tetrahedron ABGH give a
triangulation of the perturbed cube with 7 tetrahedra. The boundary triangulation is shown in the

flat diagram. It is worth noticing that for the regular cube the boundary triangulation we showed

does not extend to a triangulation of the interior.

Figure 2.10: A triangulation of a combinatorial 3-cube into seven tetrahedra.

One can then ask, what is the general growth for the size of a maximal dissection of a combina-
torial cube? To answer this question, at least partially, we use the above construction and we adapt
an idea of M. Haiman, originally devised to produce small triangulations of regular cubes [52]. The
idea is that from triangulations of a dj-cube and a ds-cube of sizes s; and s respectively we can
get triangulations of the (d; + d3)-cube by first subdividing it into s; x sz copies of the product
of two simplices of dimensions d; and ds and then triangulating each such piece. We recall that

any triangulation of the Cartesian product of a d;-simplex and a d»-simplex has (dljl‘b) maximal

simplices. Hence, in total we have a triangulation of the (d; + dz)-cube into s; X s5 X (dli'le) max-
imal simplices. Recursively, if one starts with a triangulation of size s of the d-cube, one obtains

triangulations for the rd-cube of size (rd)!(5)". In Haiman’s context one wants s to be small, but
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here we want it to be big.

More precisely, let us denote by f(d) the function max¢. g4.cube(maxr of ¢ |T|) and call g(d) =
(f(d)/d")'/?. Haiman’s argument shows that if f(di) > c1%d;! and f(d2) > c%ds! for certain
constants ¢; and cy then f(dy + ds) > c;%¢y%(dy +ds)!. Put differently, that g(d; + da) >
(g(dy)* g(dy)%)'/(d1+d2)  The value on the right hand side is the weighted geometric mean of
g(dy) and g(ds). In particular, if both g(d;) and g(ds) are > 1 and one of them is > 1 then
g(dy + ds) is > 1 as well.

We have constructed above a triangulation of size 7 for the Klee-Minty 3-cube, which proves
g(3) > §/7/6 = 1.053. With Haiman’s idea we can now construct “large” triangulations of certain
4-cubes and 5-cubes, which prove respectively that g(4) > /7/6 = 1.039 and g(5) > ¢/7/6 = 1.031
(take d; = 3 and d» equal to one and two respectively). Finally, since any d > 5 can be expressed

as a sum of 3’s and 4’s, we have g(d) > min{g(3), g(4)} > 1.039 for any d > 5. Hence:

Proposition 2.10. For the family of combinatorial d-cubes with d > 2 the function f(d) =

maxe, d.cube(mMaxr of ¢ |T|) admits the lower bound f(d) > c?d! where ¢ > 1.031.

Exactly as in Haiman’s paper, the constant ¢ can be improved (asymptotically) if one starts
with larger triangulations for the smaller dimensional cubes. Using computer calculations (see
Remark 2.14), we obtained a maximal triangulation for the Klee-Minty 4-cube with 38 maximal
simplices, which shows that g(d) > {/38/24 = 1.122 for every d divisible by 4 (see [2] for a complete
study of this family of cubes). We omit listing the triangulation here but it is available from the

author by request.

Open problem 2.11. Is the sequence g(d) bounded? In other words, is there an upper bound of
type c?d! for the function f(d)? Remark that the same question for minimal triangulations of the
regular d-cube (whether there is a lower bound of type c?d! for some ¢ > 0) is open as well. See

[94] for the best lower bound known.

We continue our discussion with the study of optimal triangulations for three-dimensional
prisms and antiprisms. We will call an m-prism any 3-polytope with the combinatorial type of the
product of a convex m-gon with a line segment. An m-antiprism will be any 3-polytope whose
faces are two convex m-gons and 2m triangles, each m-gon being adjacent to half of the triangles.
Vertices of the two m-gons are connected with a band of alternately up and down pointing triangles.

Each such polyhedron has a regular coordinatization in which all the faces are regular poly-
gons, and a realization space which is the set of all possible coordinatizations that yield the same

combinatorial information [83]. Our first result is valid in the whole realization space.

Proposition 2.12. For any three-dimensional m-prism, in any of its possible coordinatizations,
the number of tetrahedra in a minimal triangulation is 2m — 5+ [7].
For any three-dimensional m-antiprism, in any of its possible coordinatizations, the number of

tetrahedra in o minimal triangulation is 3m — 5.

Proof. In what follows we use the word cap to refer to the m-gon facets appearing in a prism or
antiprism. We begin our discussion proving that any triangulation of the prism or antiprism has

at least the size we state, and then we will construct triangulations with exactly that size.
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We first prove that every triangulation of the m-prism requires at least 2m—5+[ 3| tetrahedra.
We call a tetrahedron of the m-prism mized if it has two vertices on the top cap and two vertices
on the bottom cap of the prism, otherwise we say that the tetrahedron is top-supported when it
has three vertices on the top (respectively bottom-supported). For example, Figure 2.11 shows a
triangulation of the regular 12-prism, in three slices. Parts (a) and (c) represent, respectively, the
bottom and top caps. Part (b) is the intersection of the prism with the parallel plane at equal
distance to both caps. In this intermediate slice, bottom or top supported tetrahedra appear as

triangles, while mixed tetrahedra appear as quadrilaterals.

(a (b) (c)

Figure 2.11: A minimal triangulation of the regular 12-prism.

Because all triangulations of an m-gon have m — 2 triangles there are always exactly 2m — 4
tetrahedra that are bottom or top supported. In the rest, we show there are at least [ | —1 mixed
tetrahedra. Each mixed tetrahedra marks an edge of the top, namely the edge it uses from the
top cap. Of course, several mixed tetrahedra could mark the same top edge. Group together top-
supported tetrahedra that have the same bottom vertex. This grouping breaks the triangulated
top m-gon into polygonal regions. Note that every edge between two of these regions must be
marked. For example, in part (c) of Figure 2.11 the top cap is divided into 6 regions by 5 marked
edges (the thick edges in the Figure). Let r equal the number of regions under the equivalence
relation we set. There are r — 1 interior edges separating the r regions, and all of them are marked.
Some boundary edges of the top cap may be marked too (none of them is marked in the example
of Figure 2.11).

We can estimate the marked edges in another way: There are m edges on the boundary of the
top, which appear partitioned among some of the regions (it could be the case some region does not
contain any boundary edge of the m-gon). We claim that no more than two boundary edges per
region will be unmarked (*). This follows because a boundary edge is not marked only when the top
supported tetrahedron that contains it has the point in the bottom cap that is directly under one
of the vertices of the edge. In a region, at most two boundary edges can satisfy this. Hence we get
at least m — 2r marked edges on the boundary of the top and at least (r—1)+(m—2r) =m—r—1
marked edges in total. Thus the number of mixed tetrahedra is at least the maximum of » — 1 and
m —r — 1. In conclusion, we get that, indeed, the number of mixed tetrahedra is bounded below
by [%]—1. Note that we only use the combinatorics and convexity of the prism in our arguments.
We will show that minimal triangulations achieve this lower bound, but then, observe that if m is

even, in a minimal triangulation we must have r = m/2 and no boundary edge can be marked, as
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is the case in Figure 2.11. If m is odd, then we must have r € {(m —1)/2, (m +1)/2} and at most
one boundary edge can be marked.

The proof that any triangulation of an m-antiprism includes at least 3m — 5 tetrahedra is
similar. There are 2m — 4 top-supported and bottom-supported tetrahedra in any triangulation
and there are 7 — 1 marked edges between the regions in the top. The only difference is that,
instead of claim (x), one has at most one unmarked boundary edge per region. Thus there are at
least m —r marked edges in the boundary of the top, and in total at least (r—1)+(m—r) =m—1
marked edges in the top. Hence there exist at least (2m —4) + (m — 1) = 3m — 5 tetrahedra in
any triangulation.

For an m-antiprism we can easily create a triangulation of size 3m — 5 by choosing any trian-
gulation of the bottom m-gon and then coning a chosen vertex v of the top m-gon to the m — 2
triangles in that triangulation and to the 2m — 3 triangular facets of the m-antiprism which do not
contain v. This construction is exhibited in Figure 2.12. Parts (a) and (c) show the bottom and
top caps triangulated (each with its 5 marked edges) and part (b) an intermediate slice with the

5 mixed tetrahedra appearing as quadrilaterals.

(a (b) (c)

Figure 2.12: A minimal triangulation of the regular 6-antiprism.

For an m-prism, let u; and v;, ¢ = 1,...,m denote the top and bottom vertices respectively, so
that the vertices of each cap are labeled consecutively and u;v; is always an edge of the prism.

If m is even we can chop off the vertices u; for odd ¢ and v; for even j, so that the prism

is decomposed into m tetrahedra and an (7)-antiprism. The antiprism can be triangulated into

3m
2

5m

5° — b tetrahedra, as desired.

— b tetrahedra, which gives a triangulation of the prism into

Actually, this is how the triangulation of Figure 2.11 can be obtained from that of Figure 2.12.

If m is odd we do the same, except that we chop off only the vertices ui,...,un,—2 and
V2,-.-,Um—1 (nO vertex is chopped in the edge u,,v,,). This produces m — 1 tetrahedra and
an (™tl)-antiprism. We triangulate the antiprism into 37:t2 — 5 tetrahedra and this gives a
triangulation of the m-prism into 3™+l — 5 tetrahedra. O

We have seen that the coordinates are not important when calculating minimal triangulations
of the three-dimensional prisms and antiprisms. On the other hand, the difference in size of the
maximal triangulation can be quite dramatic. Below we prove that in certain coordinatizations it

is roughly mTz and show experimental data indicating that for the regular prism it is close to mTZ.

Proposition 2.13. Let A,, be a prism of order m, with all its side edges parallel.
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1. The size of a mazimal triangulation of A,, is bounded as

2 _ 2 —

m* + 6m — 16 < max |T|§m +m 6.
4 T of A 2

2. The upper bound is achieved if the two caps (m-gon facets) are parallel and there is a direction

in which the whole prism projects onto one of its side quadrangular facets. (For a concrete

example, let one of the m-gon facets have vertices on a parabola and let A,, be the product

of it with a segment).

Proof. Let the vertices of the prism be labeled w1, ..., u, and vy,...,v,, so that the u;’s and the
v;’s form the two caps, vertices in each cap are labeled consecutively and u;v; is always a side edge.

For the upper bound in part (1), we have to prove that a triangulation of A4,, has at most
W —2m+3 = w interior diagonals. The possible diagonals are the edges u;v; where
i — 7 is not in {—1,0,1} modulo m. This gives exactly twice the number we want. But for any 4
and j the diagonals u;v; and u;v; intersect, so only one of them can appear in each triangulation.

We now prove that the upper bound is achieved if 4,, is in the conditions of part (2). In fact,
the condition on A,, that we will need is that for any 1 <7 < j < k <l < m, the point v; sees
the triangle v;ugu; from the same side as vy and v; (i.e. “from above” if we call top cap the one
containing the v;’s). With this we can construct a triangulation with W = (mz_ 1) +2m -4
tetrahedra, as follows:

First cone the vertex v; to any triangulation of the bottom cap (this gives m — 2 tetrahedra).
The m — 2 upper boundary facets of this cone are visible from v,, and we cone them to it (again
m — 2 tetrahedra). The new m — 2 upper facets are visible from v3 and we cone them to it (m — 2
tetrahedra more). Now, one of the upper facets of the triangulation is vjv,v3, part of the upper
cap, but the other m — 3 are visible from v4, so we cone them and introduce m — 4 tetrahedra.
Continuing the process, we will introduce m—4, m—5, ..., 2,1 tetrahedra when coning the vertices
Vs, Vg, - - - , Um—1, Um, Which gives a total of (m; 1) + 2m — 4 tetrahedra, as desired.

The triangulation we have constructed is the placing triangulation [70] associated to any order-
ing of the vertices finishing with vq,...,v,,. A different description of the same triangulation is
that it cones the bottom cap to vy, the top cap to u,,, and its mixed tetrahedra are all the possible
Vivi+1u;uj1 for 1 < i < j < m — 1. This gives (mz_l) mixed tetrahedra, and (m.;l) +2m -4
tetrahedra in total.

We finally prove the lower bound stated in part (1). Without loss of generality, we can assume
that our prism has its two caps parallel (if not, do a projective transformation keeping the side
edges parallel). Then, A,, can be divided into two prisms in the conditions of part (2) of sizes
k and ! with kK +1 = m + 2: take any two side edges of A,, which posses parallel supporting
planes and cut A4,, along the plane containing both edges. By part (2), we can triangulate the
two subprisms with (k;rl) — 3 and (“gl) — 3 tetrahedra respectively, taking care that the two
triangulations use the same diagonal in the dividing plane. This gives a triangulation of A4, with
(ki,'l) + (Hz'l) —6= ’“2"'12‘2*7’”_10 tetrahedra. This expression achieves its minimum when k and [
are as similar as possible, i.e. k = [ 3] +1 and [ = [2*] + 1. Plugging these values in the expression

. . . . 2 p—
gives a triangulation of size [W-‘. 0
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Based on an integer programming approach we can compute maximal triangulations of specific
polytopes (see remark at the end of this chapter). Our computations with regular prisms up to
m = 12 show that the size of their maximal triangulations achieve the lower bound stated in part
(1) of Proposition 2.13 (see Table 2.2). In other words, that the procedure of dividing them into
two prisms of sizes | 7] + 1 and [3] + 1 in the conditions of part (2) of Proposition 2.13 and
triangulating the subprisms independently yields maximal triangulations.

We have also computed maximal sizes of triangulations for the regular m-antiprisms up to

WJ. A construction of a triangulation of

m = 12, which turn out to follow the formula [
this size for every m can be made as follows: Let the vertices of the regular m-antiprism be labeled
Uty...,Un and vi,...,v, so they are forming the vertices of the two caps consecutively in this
order and v;u; and w;v;41 are side edges. We let v,,11 = v1. The triangulation is made by placing
the vertices in any ordering finishing with vy, ve, vy, v3, Vm—_1,-- -, CIESEER The tetrahedra used are
the bottom-supported tetrahedra with apex v;, top-supported tetrahedra with apex Upmy and the
mixed tetrahedra v;v;y1u;ujqq for 1 <4 < j < |2 and wsu;p1vv541 for [ 3] +1<4i <j <m.
We conjecture that these formulas for regular base prisms and antiprisms actually give the sizes

of their maximal triangulations for every m, but we do not have a proof.

m 3| 4 5 6 7 8 9 10 | 11 | 12

Prism (regular base) 3116|1014 | 19 | 24| 30 | 36 | 43 | 50

Antiprism (regular base) | 4 | 8 | 12 | 17 | 22 | 28 | 34 | 41 | 48 | 56

Table 2.2: Sizes of maximal triangulations of prisms and antiprisms.

Remark 2.14. How can one find minimal and maximal triangulations in specific instances? The
approach we followed for computing Tables 2.1 and 2.2 and some of the results in Proposition 2.5 is
the one proposed in [31], based on the solution of an integer programming problem. We think of the
triangulations of a polytope as the vertices of the following high-dimensional polytope: Let A be a
d-dimensional polytope with n vertices. Let N be the number of d-simplices in A. We define P4 as
the convex hull in RY of the set of incidence vectors of all triangulations of A. For a triangulation T
the incidence vector vr has coordinates (vr), =1if 0 € T and (vr), =0 if o ¢ T. The polytope
Py is the universal polytope defined in general by Billera, Filliman and Sturmfels [7] although it
appeared in the case of polygons in [27]. In [31], it was shown that the vertices of P4 are precisely
the integral points inside a polyhedron that has a simple description in terms of the oriented
matroid of A (see [31] for information on oriented matroids). The concrete integer programming
problems were solved using C-plez Linear Solver’ . The program to generate the linear constraints
is a small C++ program written by Jestis A. De Loera and Samuel Peterson. Source code, brief
instructions, and data files are available via ftp at http://www.math.ucdavis.edu/~deloera.
An alternative implementation by A. Tajima is also available [101] [102]. He used his program to
corroborate some of these results.

It should be mentioned that a simple variation of the ideas in [31] provides enough equations

for an integer program whose feasible vertices are precisely the 0/1-vectors of dissections. The
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incidence vectors of dissections of conv(A), for a point set A, are just the 0/1 solutions to the system
of equations (z,vr) = 1, where vr’s are the incidence vectors for every regular triangulation T' of
the Gale transform A* (regular triangulations in the Gale transform are the same as chambers in
A). Generating all these equations is as hard as enumerating all the chambers of A. Nevertheless,
it is enough to use those equations coming from placing triangulations (see [87, Section 3.2]), which

d+1

gives a total of about n equations if A has n points and dimension d.

2.5 Conclusion

The difference between dissections and triangulations starts from dimension three, and we have
solved the fundamental case of 3-polytopes. Now we know size differences in minimal and maximal
sides, and bounds also on the size of dissections. The next case to consider is for 4-polytopes,
though the situation can be quite messy.

We have also analyzed extremal size triangulations for specific non-simplicial 3-polytopes and
combinatorial d-cubes. One of the related open problems important for triangulations of 3-

polytopes is the following:

e What is the computational complexity of calculating the size of a maximal triangulation?
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Chapter 3

Nonregular triangulations, view graphs of

triangulations, and linear programming duality

For a triangulation and a point, we define a directed graph representing the order of the maximal
dimensional simplices in the triangulation viewed from the point. We prove that triangulations
having a cycle the reverse of which is not a cycle in this graph viewed from some point are forming
a (proper) subclass of nonregular triangulations. We use linear programming duality to investigate
further properties of nonregular triangulations in connection with this graph. (Preliminary versions

appeared in [103] [104].)



3.1 Imtroduction

Let A = {p;,...,p,} C R? be a point configuration with its convex hull conv(.A) being a d-
dimensional polytope. A triangulation A of A is a geometric simplicial complex with its vertices
among A and the union of its faces equal to conv(A4). A triangulation is regular (or coherent) if it
can appear as the projection of the lower faces of the boundary complex of a (d + 1)-dimensional
polytope in R4+1, If not, the triangulation is nonregular. (See, for example, [69] [106].)

Starting from the study of generalized hypergeometric functions, Gel’fand, Kapranov & Zelevin-
skii showed that regular triangulations of a point configuration are forming a polytopal structure
described by the secondary polytope [44] [45]. In connection with Grobner bases, Sturmfels showed
that initial ideals for the affine toric ideal determined by a point configuration correspond to the
regular triangulations of the point configuration [99] [100]. Regular triangulations are a general-
ization of the Delaunay triangulation well known in computational geometry, and have also been
used extensively in this field [35].

Though nonregular triangulations are known to be behaving differently from regular triangu-
lations, they are not well understood yet. Santos showed a nonregular triangulation with no flips
indicating that a flip graph can be disconnected, which never happens when restricted to regular
triangulations [86]. Ohsugi & Hibi showed the existence of a point configuration with no unimod-
ular regular triangulations, but with a unimodular nonregular triangulation [77]. Also, de Loera,
Hogten, Santos & Sturmfels showed that cyclic polytopes can have exponential number of nonreg-
ular triangulations compared to polynomial number of regular ones [31]. The aim of this chapter
is to put some insight into nonregular triangulations.

In the sequel, we fix a triangulation A. For the triangulation A and a point v in R¢, we define
the graph G, of A viewed from v as the directed graph with its vertices corresponding to the d-
simplices in A and a directed edge 77 existing when o, 7 are adjacent and v belongs to the closed
halfspace having the affine hull aff (6 N 7) as its boundary and including 6. When v € aff(e N 7),
both edges 7,7 appear in G,. The graph G, is a directed graph whose underlying undirected
graph is the adjacency graph of the d-simplices in A. Of course, G, might differ for different
choices of v. Though there are infinitely many choices of viewpoints v, there are only finitely

many view graphs G,,.

A sequence of vertices o1,03,...,0;,01 in G, forms a cycle when 7103, ...,5,-16;,05;01 are
edges of G, and 0; # o for i # j. We define a cycle 01, 02,...,0;,01 to be contradicting when
the reverse sequence o1,0;,...,02,01 is not a cycle in G,,. For vertices 01,...,0; in G,, the edges

G10%,...,0,_10,,0201,...,0:0,_1 exist if and only if v € aff(c; N---N 7).

The regularity of a triangulation can be stated as a linear programming problem, so regularity
and linear programming obviously have a connection. An interesting point in our argument is
that we use linear programming duality to analyze in further detail some properties of nonregular
triangulations.

For any triangulation, the condition of regularity can be written as a linear programming
problem as follows. Let the variable w = (wi,...,w,) represent the (d + 1)-coordinates of the

lifting (or weight) of the vertices p,,...,p,, such that the triangulation is lifted to a piecewise
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linear function f,, from conv(A) to R. For each (d — 1)-simplex in A not in the boundary of the
convex hull conv(.A), the local convexity of f,, can be expressed by a linear inequality involving
only the vertices of the two adjacent d-simplices in A (see Section 3.2.1). Gather the inequality
constraints that correspond to each such interior (d — 1)-simplex. Altogether, we get a system of
inequalities Aw > 0 (0 is the zero vector), and the triangulation is regular if and only if this has
a solution. Easily, this is equivalent to Aw > 1 (1 is the vector with all entries one) having a
solution. Thus, by linear programming duality (or Farkas’ lemma), the triangulation is nonregular
if and only if the dual problem uwA = 0, u > 0 has a nonzero solution.

Our main theorem constructs a nonzero solution of the dual problem combinatorially and

explicitly from a contradicting cycle in a graph of the triangulation viewed from some point.

Theorem 3.1. For a triangulation A, if a graph G, viewed from some point v contains a con-
tradicting cycle, in correspondence with this cycle, we can make a nonzero solution of the dual
problem stated above. Thus, A is nonregular. The support set (i.e. collection of nonzero elements)
of this solution becomes a subset of the edges forming the cycle. On the other hand, the reverse
of this claim is not true. There exists a nonregular triangulation with none of its view graphs G,

containing a contradicting cycle. (See Ezample 3.6)

The theorem says that triangulations containing a contradicting cycle in its graph G, viewed
from some point v are forming a (proper) subclass of nonregular triangulations. This subclass
of triangulations On the other hand, regularity or nonregularity, defined by linear inequalities,
is interesting in that their nonregularity are described more combinatorially using graphs. are
of continuous nature. This is the first attempt to give a (combinatorial) subclass of nonregular
triangulations. Even if we consider contradicting closed paths instead of contradicting cycles,
allowing to pass the same vertex more than once, the class of the triangulations having such
contradicting thing in its view graph does not change, because any contradicting closed path
includes a contradicting cycle.

Checking that Example 3.6 is a counterexample for the reverse of the implication in the the-
orem (i.e. the view graph from any viewpoint does not contain a contradicting cycle), can be
done by extensive enumeration of view graphs. However, by describing nonregularity as a linear
programming problem, and using linear programming duality, we prove the counterexample in a
more elegant way.

A similar but different directed graph of a triangulation viewed from a point has been studied
by Edelsbrunner [36]. This was in the context of computer vision, and his graph represents the
in_front/behind relation among simplices of any dimension, even not adjacent to each other. When
our graph and the restriction of Edelsbrunner’s graph to d-simplices are compared, neither includes
the other in general. However, if we take the transitive closure of our graph, it includes his graph
as a (possibly proper) subgraph. Our graph might be more appropriate in describing combinatorial
structures of triangulations, because their underlying undirected graphs are the adjacency graphs
of d-simplices. Edelsbrunner proves that if a triangulation is regular, his graph viewed from any
point is “acyclic”. The line shelling argument in a note there gives a proof for the contrapositive

of our theorem, but without explicit construction of a solution of the dual problem.
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We first prepare basic results, and then prove our main theorem (Section 3.2). Finally, we give

illustrative examples and a counterexample for the reverse of the main theorem (Section 3.3).

3.2 Regularity, linear programming, and duality

3.2.1 Inequalities for regularity

A triangulation A of the point configuration p,...,p,, is regular if there exists a lifting (or
weight) wy, ..., w, € R such that the projection with respect to the x4, 1 axis of the lower faces of
the boundary complex of the (d + 1)-dimensional polytope conv((®),..., (¥)) becomes A. This
condition on the lifting is equivalent to the condition that the function from conv(.A) to R obtained
by interpolating the lifting according to the triangulation in a piecewise linear fashion is convex.
This implies (in fact, is equivalent to) the local convexity of this function in the neighborhood of
every (d — 1)-simplex in A which is not on the boundary of A. These conditions can be described
by inequalities with wy,...,w, the variables.

A global criterion for convexity is therefore as follows:

e For each d-simplex conv(p, ,...,p;,) in A, and any point p; € {p;,,---,P;,}, the lifted point
(ZJJ) is above the hyperplane aff((f;;t;), . (Zj)) in R4+,

1 .- 1 1
1 ... 1

Pii 0 Piy Py |20
p’io vt p’id

Wiy Wi, Wy

A local criterion for convexity can be expressed with much fewer inequalities as follows:

e For each interior (d—1)-simplex conv(p;, , - .,P;,) in A, where the two d-simplices conv(p;,, p;,,
.-,p;,) and conv(p; ,.-.,P;,,P;,,,) are intersecting, the lifted point (Pia+1) is above the
*d+1
i i ] d+1.
hyperplane aff((zig),. e (53)) in R+

1 .- 1
Pi, 0 Piy Pig, |7 0. (%)
pio T pid
Wiy -+ Wiy Wiy,

The equivalence of these two convexity conditions is proved easily by reducing to the one dimen-
sional case.

The collection of inequalities (%) for all interior (d — 1)-simplices in A form a linear program
which we denote by

Aw > 0.

We say the matrix A of this linear program represents the regularity of A. Note that this program
has solutions if and only if the program Aw > 1 has solutions. Let m be the number of interior

(d — 1)-simplices in A. The matrix A is an m X n matrix.

Lemma 3.2. For a triangulation A, and the matriz A representing its reqularity, A is reqular if
and only if there exists w € R™ such that Aw > 1. By linear programming duality (or Farkas’
lemma), A is nonregular if and only if there exists u > 0, u # 0 such that uA = 0.
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Thus, the (non)regularity of A can be judged by the existence of a nonzero point in the

polyhedron {u > 0: uA = 0} C R™ of the set of solutions of the dual problem.

3.2.2 A nonzero solution of the dual problem from a contradicting cycle

Here, we give an explicit construction of a nonzero solution of the dual problem u4A = 0,u > 0,
from a contradicting cycle in the graph G, viewed from some point v. For v € R?, a d-simplex
o in A, and w € R", define z411(v,0,w) as follows: consider the projection along the (d + 1)-
coordinate of the point v to the affine hull of f, (o), the lifting of the d-simplex o by w, in R4+1,

and let z441(v,0,w) be the 441 coordinate of this point.

Lemma 3.3. Let A be a triangulation, A the matriz representing its reqularity, and v € R%. For

an edge & in the graph G, viewed from v, there exists a constant ayn, > 0 such that
wd+1(v,a,w) - xd+1(va7-aw) = ao‘ﬂ‘er-ﬂ‘r,*'w (f07' any w € Rn),

where Agnr s is the row of A corresponding to the interior (d—1)-simplex 6 NT in A. Furthermore,

v € aff(o N 7) if and only if aynr = 0.
Proof. Straightforward. O

We now construct a nonzero solution of the dual problem from a contradicting cycle. This will

prove the forward implication in our main theorem.

Proof. (Theorem 3.1) Suppose we have a contradicting cycle o1, 03, ...,0;,01 in G,. By Lemma
3.3, we can find a4,y -+ 000y = 0, or their collection as a vector o > 0, satisfying for any
w € R,

T4+1(v,01, w) — Ta41(v, 02, W)

+ zg11(v, 05, w) — 2441 (v, 01, w)

= QgiNoa A0'1 Noz,+W

+ ad,’ No1 Ad;ﬂdl,*w
= aAw

=0.

(The elements corresponding to the edges not in the cycle have 0 as their value in vector a.) Thus,
aA = 0. Since we took a contradicting cycle, by Lemma 3.3, a # 0. Hence, we obtain a nonzero
solution of the dual problem uA = 0,u > 0. This together with Lemma 3.2 proves the forward

implication in the main theorem. -
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3.2.3 Recognizing nonregularity or finding contradicting cycles

Judging whether the given triangulation A is (non)regular reduces to judging whether the system
of inequalities Aw > 1 has a solution w, where the matrix A represents the regularity of A in the
sense described above. This is a linear programming problem, and can be computed in polynomial
time for fixed dimension d, for example, using interior point method.

One way to judge if a triangulation A has a contradicting cycle in some view graph G, is to
enumerate all possible view graphs and enumerate the cycles there. The generation of view graphs
can be done, for example, by generating all graphs viewed from the minimal cells in the hyperplane

arrangement made by the affine hulls of the interior (d — 1)-simplices in A.

3.3 Examples

Example 3.4 (A nonregular triangulation with 6 vertices). For the point configuration

b, = (0 0)7 Dy = (4 O)a D3 = (0 4)7
Dby = (1 1)7 D5 = (2 1)a D = (1 2)7

we consider the triangulation A indicated in Figure 3.1(a) below. The graph G,, viewed from v =

(% %) is in Figure 3.1(b). It has one contradicting cycle p;p,ps, P1P2Ps, PaP5Ps, P2P3Ps, P3P4Ds>

P1DPsPs, P1P4Ps denoted by bold edges. The matrix representing the regularity of A is

W) W2 Wz W4 Wy We
PPy | 3 1 -8 4
pips | -1 1 4 4
Pops | 1 3 -8 4
A— P2p¢ -1 1 4 -4 )
Pspy | 1 -1 -4 4
P3P 13 4 -8
Pyps | 1 -3 1 1
P4P¢ 1 1 I -3
P5Dg 1 1 -3 1

P3

N
T} plﬁ pz N

D

(a) triangu- (b) graph viewed from (¢) support of the

lation v dual solutions

Figure 3.1: Example 3.4.
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The polyhedron of the solutions of the dual problem is a single ray
{u>0:Au=0}=R>0,(010110000),

where interior 1-simplices are indexed lexicographically. The support of the nonzero solutions
is denoted by bold edges in Figure 3.1(c). Remark that they are included in the (underlying

undirected) edges of the contradicting cycle.

Example 3.5 (Another nonregular triangulation with 6 vertices). The vertex p, in Ex-

ample 3.4 is perturbed. The point configuration becomes

P, = (00), pzz(% 0), p3 = (04),

Dby = (1 1)7 D5 = (2 1)7 D = (1 2)
The triangulation A is indicated in Figure 3.2 below. Each of the graph viewed from v, = (3 3),
vy = (5 3), or v3 = (% I) has a unique contradicting cycle. The matrix representing the regularity
of Ais

w; W2 W3 Wqg W5 W
PPy | 3 1 -8 4
pips | -1 1 % _%
D2DPs % 3 -7 %
A= D2Pg -1 % 3 —3 )
P3Py | 1 -1 -4 4
P3P¢ 1 g 3 - %
Pups | 1 -3 1 1
P4Pg 1 1 1 -3
DsDPg 1 % _% 1
Ps

p1 p2

Figure 3.2: Triangulation of Example 3.5.
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The polyhedron of the solutions of the dual problem is a cone

{u>0:Au =0}

= R>0(180850000)
+R50(0821470000)
+R>0(060761000)
+R50(020210100)
+R50(020220010)
+R50(010210001),

where interior 1-simplices are indexed lexicographically. The first three rays correspond to the
solutions made by the contradicting cycles in view graphs G, Gv,, Go;, as in Subsection 3.2.2.

The latter three rays have no such correspondence.

Example 3.6 (Counterexample for the reverse of the main theorem). With the point con-

figuration

Db = (0 0)7 D2 = (3 0)7 pbs = (3 4)7 by = (0 4)7
b5 = (1 1)7 D = (2 1)7 Dy = (2 3)7 Dg = (1 3)7

the triangulation A indicated in Figure 3.3(a) below is a nonregular triangulation with none of its

view graphs G, containing a contradicting cycle. The matrix representing the regularity of A is

p4 p3 p4 p3
pg p8
p7 p7
ps p5
pe p6
P P2 Py P2
(a) triangulation (b) support of the dual solu-
tions

Figure 3.3: Example 3.6.
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w; Wy Wz Ws | Wy W Wy Ws
PipPs | 3 1 (-8 4
pipe| -1 1 3 -3
PoDs | 2 4 -9 3
p2py -2 2 4 -4
DsDr 1 3 -8 4

A= P3Dg -1 1 3 -3 _

P4Ps 2 4 3 -9
PuDs | 2 -2 | -4 4
PsPs | 2 -4 1 1
PsD7 2 2 -5 1
P7Ps 2 1 -4 1
DsDs 2 1 2 -5
pspr -2 2 -2 2

The polyhedron of the solutions of the dual problem is a single ray
{u>0:Au =0} =R>0(0201020100001),

where interior 1-simplices are indexed lexicographically. The support of the nonzero solutions is
denoted by bold edges in Figure 3.3(b). If a contradicting cycle existed for some view graph G,
this (directed) cycle should contain all of the bold edges (in its underlying undirected counterpart).
However, there are no cycles containing all of these bold edges. Hence, there exists no view graph
G, containing a contradicting cycle for this example. (Remark: If we take the edge pgps instead

of p;p;, this new flipped triangulation becomes regular.)

3.4 Conclusion

We defined a subclass of nonregular triangulations: triangulations having a contradicting cycle in
a graph viewed from some point. This class is interesting in that their description is more combi-
natorial compared to regularity. This direction might lead to deeper understanding of nonregular
triangulations. However, the work in this chapter is still premature. The ultimate goal is to give a
combinatorial characterization of nonregularity. We first have to understand how much informa-
tion the collection of all possible view graphs of a triangulation have. Important questions are as

follows:

e Are there combinatorially isomorphic triangulations, one regular and one nonregular, having

the same collection of view graphs?

e Can combinatorially isomorphic triangulations on point configurations with different oriented

matroids have the same collection of view graphs?
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Chapter 4

Geometric shellings of 3-polytopes

A total order of the facets of a polytope is a geometric shelling if there exists a combinatorially
equivalent polytope in which the corresponding order of facets becomes a line shelling. The subject
of this chapter is (geometric) shellings of 3-polytopes. Recently, a graph theoretical characterization

of geometric shellings of 3-polytopes was given by Holt & Klee and Mihalisin & Klee.
e We first give a graph theoretical characterization of shellings of 3-polytopes.
Then we show interesting sufficient conditions for a shelling of a 3-polytope to be geometric:
e the first and the last facet being adjacent,
e any facet (except the first two) being adjacent to no less than two previous facets or
e the polytope being simple and only having triangular or quadrilateral facets.

A nongeometric shelling of a (simplicial) 3-polytope was first shown by Smilansky. Simple 3-
polytopes allow perturbations of facets, thus might have more chance a shelling is geometric.

However,

e we show an example of a simple 3-polytope having a nongeometric shelling. The number of

facets of this example is minimal and smaller compared to those previously known.

The discussions proceed in the polar setting: as total orders of vertices of the polar polytope. The
connection between our results on 3-polytopes and their proofs using graph theory is of interest.
(Joint work with Takayuki Ishizeki [57])



4.1 Introduction

A total order of the facets of a polytope is a shelling if it satisfies some topological condition
(defined below at (*)). Shellings have many applications both in combinatorial and computational
geometry: for example, they are crucial for the upper bound theorem [18] [73], and are used in
convex hull construction [91]. A total order of the facets of a polytope corresponds to a total order
of the vertices of the polar polytope. Such order of vertices is a polar shelling. A line shelling is
some special shelling, and its polar becomes an ordering of the vertices of the polar polytope by
a sweep of parallel hyperplanes, which we call a polar line shelling (see [40] [93] [106]). Polar line
shellings are relevant to simplex methods in linear programming [88].

A total order of the facets of a polytope is a geometric shelling if in some combinatorially
equivalent polytope the corresponding order becomes a line shelling. We call the total order of
the vertices of the polar a polar geometric shelling. If a (polar) shelling is not a (polar) geometric
shelling, it is called a (polar) nongeometric shelling.

In this chapter, we discuss combinatorial properties of shellings of 3-polytopes. In the beginning
of this chapter, we listed our results in terms of shellings, or total order of facets. In the remaining
main part, most of our discussions proceed in the polar setting: as total orders of the vertices
of (a graph of) a 3-polytope. The face lattice of a 3-polytope is completely determined by its
graph. The main results of this chapter can be described in purely graph theoretical terms. Holt
& Klee [53] and Mihalisin & Klee [74] recently gave a characterization of polar geometric shellings
of 3-polytopes in terms of directed graphs. Their results are used in some of our proofs.

Special cases of our interests are shellings of simple 3-polytopes (polar shellings of simplicial
3-polytopes). Such polytopes do not change their combinatorial properties under perturbation
of facets (vertices). So, there might be more chance shellings (polar shellings) of such polytopes
become geometric shellings (polar geometric shellings).

All graphs considered are simple (i.e. no loops or multiple edges). Connectivity means vertex
connectivity.

The following is basic for graphs of 3-polytopes.

Lemma 4.1. o (Steinitz’ theorem) A graph is a graph of a 3-polytope if and only if it is planar

and 3-connected.

e A graph is a graph of a simplicial 3-polytope if and only if it is mazimal planar and has no

less than four vertices.

Now, to directed graphs. A total order < of the vertices of a graph induces a directed graph
by directing st for an edge {s,t} with s < ¢. Directed graphs by such directing are acyclic. The
symbol k will be used for the cardinality of the vertices, and the vertices will be labeled 1 < --- < k
according to the total order.

We define a total order Fi,..., Fj of the facets of a 3-polytope to be a shelling if

UF=B> (1<i<k), (¥)
j=1
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where & B? means homeomorphic to a standard 2-dimensional ball. (This definition is compatible
with the one in Section 5.2.) A total order of the vertices of a 3-polytope is a polar shelling if the
corresponding order of the facets of the polar polytope is a shelling. The face lattice of a 3-polytope
is determined by its graph. The graph of the polar of a 3-polytope is the dual of the graph of the
original polytope. Since shellings and polar shellings are well-defined for the face lattice, (polar)
shellings can be defined for graphs of 3-polytopes. We give a simple characterization for polar

shellings:

Theorem 4.2. A total order of the vertices of a graph of a 3-polytope is a polar shelling if and
only if the induced directed graph has a unique source and a unique sink. (The source vertex 1, the

sink vertez k.)
Proof. Section 4.2. O

Since (polar) geometric shellings of 3-polytopes are also combinatorial properties depending
only on the face lattice and the total order of the facets (or vertices), we can define them for
graphs of 3-polytopes. A necessary and sufficient condition for a total order of the vertices of a
graph of a 3-polytope to become a polar geometric shelling was given recently by Holt & Klee [53]
and Mihalisin & Klee [74]:

Theorem 4.3 ([53] [74]). A total order of the vertices of a graph of a 3-polytope is a polar ge-
ometric shelling if and only if the induced directed graph has a unique source, a unigque sink (the

source vertex 1 and the sink vertex k) and three independent paths from 1 to k.

The paths in a directed graph should be monotone. Theorem 4.2 together with this theorem clarifies
that the “geometric” part is corresponding to the existence of the three independent paths.
We define a total order F7, ..., F} of the facets of a 3-polytope to be a strong shelling if it is a
shelling and
i—1
F;n U F; | is the union of no less than two edges (3 <i <k).

i=1

The corresponding order of the vertices of the polar is a polar strong shelling.
The following observations are of interest in context of 3-polytopes, though their proofs are
direct after Theorem 4.3:

Theorem 4.4. Fach of the following conditions is sufficient for a polar shelling total order of the
vertices of a graph G of a 3-polytope to be a polar geometric shelling.

(i) Vertices 1 and k are adjacent.
(ii) The total order is a polar strong shelling.
(iil) G is a graph of a simplicial 3-polytope with its degree at most 4.

A nongeometric shelling of a 4-polytope was known and one of a 3-polytope was given by

Smilansky [50] [93]. Both examples are for simplicial polytopes. In the polar setting, they become
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polar nongeometric shellings of simple polytopes. Simplicial 3-polytopes allow perturbations of
vertices, thus might have more chance a polar shelling is polar geometric. However, we give a
polar nongeometric shelling of a simplicial 3-polytope with 6 vertices and 8 facets. The number
of vertices of this example is minimal and smaller compared to those previously known (Example
4.7).

The remaining details are given in Section 4.2.

4.2 Proofs, examples and remarks

Proof. (Theorem 4.2)

only if: Suppose the total order was a polar shelling. By definition () of shelling, any vertex ¢ > 1
is adjacent to a smaller vertex. Thus the only source is 1. The reverse order of a shelling
is also a shelling, because the boundary of a 3-polytope is homeomorphic to a 2-sphere, and

removing a 2-ball from a 2-sphere results in a 2-ball. So, similarly, the only sink is k.

if: Suppose the induced directed graph had a unique source and a unique sink. Suppose the
condition (%) for shelling was satisfied for « = 1,...,7 — 1, but violated for r (> 1). If
A=F.N (U;;: F;) is empty or a vertex, r is also a source, contradicting the assumption.
Thus, A should consist of no less than two connected components. Take a polytope with
facets Fi,. .., F}, realizing the situation. There exists a Jordan arc in U;Zl F; having in each
side (interior points of) some facet F; (j > r). Hence, there should be at least one sink in

each side, contradicting the assumption.
O

The “if” proof is not valid for dimension larger than 3. Indeed, we have a counterexample in
dimension 4. For this case, replace = B? in the definition (x) of shelling by = B3 homeomorphic
to a 3-ball.

Example 4.5. The 4-polytope with vertices

1 =(0000), p2=(2000), ps = (0600),
pa=(1120), ps = (1230), ps=(0001)

is made by coning ps to the 3-polytope with vertices p1,...,ps. The total order of the facets
(P1P2pape), (PLP4P5P6), (P1P3P5D6), (P2P3P5P6), (P2PapPsPe), (PLP2P3PaPs), (P1P2psps) forms a Hamil-
tonian path (indeed, a Hamiltonian cycle), thus the induced directed graph has a unique source and

a unique sink. However, the union of the first four facets is not homeomorphic to B2.

Remark 4.6. (i) Theorem 4.4(i) is not true in dimension 4. Smilansky’s treatment [93] of a
polytope in Grinbaum & Sreedharan’s list [50] shows a nongeometric shelling of a simplicial

4-polytope with the first and the last facet adjacent.

(ii) A strong shelling of a simplicial 3-polytope with the first and last vertez adjacent is equivalent
to “a shelling order of vertices” in [28] [29].
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(iii) The only graph of a simple 3-polytope (i.e. planar, 3-connected and degree 3) which has a
polar strong shelling is Ky.

(iv) By Euler’s formula, graphs of simplicial 3-polytopes satisfying the condition in Theorem
4.4(iii) have 6 vertices at most. The unique (combinatorial types of) graphs of simplicial
3-polytopes with 4 or 5 vertices have degree at most 4. One type of the graphs of simplicial
3-polytopes with 6 vertices has degree at most 4. It can also be checked directly that every
polar shelling of the vertices of these three types of graphs satisfying the condition in Theorem

4.4(iii) is a polar geometric shelling.

Example 4.7, The figure shows an example of a polar nongeometric shelling of a simplicial 3-
polytope. Since the total order is defining a Hamiltonian path, it is a shelling. This example has 6
vertices and 8 facets.

This example is minimal with respect to the number of vertices, because no 3-polytope with less
than 6 vertices has a polar nongeometric shelling: The graph of a 3-polytope with 4 vertices is Ky,
thus of a simplicial 3-polytope. Any total order of its vertices is a polar geometric shelling. There
are two combinatorial types of graphs of 3-polytopes with 5 vertices, one of a simplicial 3-polytope
and the other not. Any polar shelling of the vertices of these graphs is a polar geometric shelling.
(There also exist other 3-polytopes with 6 vertices having polar nongeometric shellings. Though not

simplicial, the smallest number 5 of facets among them is attained by a triangular prism.)

6

Example 4.8. In the polar setting, Smilansky’s ezample [93] is a polar nongeometric shelling of

a simple 3-polytope. It has 8 vertices and 6 facets.
7 8

4.3 Conclusion

We gave a characterization of polar shellings of 3-polytopes. The characterization of polar geomet-
ric shellings of 3-polytopes was already settled by [53] [74]. We supplemented their results with a
few sufficient conditions of interest in polytope theory. Asking these questions for 4-polytopes is

a possible but probably difficult generalization [106]. Direct generalizations do not work (Remark

49



4.6(i)). One might need to look first for a proper question to ask. Among polytopes with a polar
shelling which is not a polar geometric shelling, the one having minimal number of vertices was

also given.
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Chapter 5

Incremental construction properties in dimension
two—shellability, extendable shellability and

vertex decomposability

We give new examples of shellable but not extendably shellable two dimensional simplicial com-
plexes. They include minimal examples, which are smaller than those previously known. We also
give new examples of shellable but not vertex decomposable two dimensional simplicial complexes.
Among them are extendably shellable ones. This shows that neither extendable shellability nor
vertex decomposability implies the other. We found these examples by enumerating shellable two
dimensional simplicial complexes which are not pseudomanifolds. A rather efficient algorithm for

this enumeration is also given. (Joint work with Sonoko Moriyama [76])



5.1 Imntroduction

A pure simplicial complex is shellable if there is a total order of facets according to which the facets
can be pasted incrementally in a nice way (see Section 5.2 for definitions). The shellability of the
boundary complexes of polytopes was shown by Bruggesser & Mani [18]. Shellability is important
both in combinatorial and computational geometry, for example, it was essential for the proof of
the upper bound of the number of faces of polytopes [73], or has been used for efficient convex
hull construction of polytopes [91]. Shellability has also been studied from algebra through the
Stanley-Reisner ring of simplicial complexes [34] [92].

A pure simplicial complex is extendably shellable if any sequence of a subset of facets satisfying
the condition of being pasted nicely can be continued to a shelling. This means we can make a
shelling by pasting facets one by one in a greedy manner. Extendable shellability was defined by
Danaraj & Klee [25], who showed that for a 2-pseudomanifold, shellability, extendable shellability,
and being a 2-ball or a 2-sphere are equivalent [26]. It is also known that rank 3 (i.e. geometrically,
2-dimensional) matroids are extendably shellable [14]. However, a 3-pseudomanifold, or even the
boundary complex of a 4-polytope can be shellable but not extendably shellable [107]. Even in
dimension two, if we consider simplicial complexes other than pseudomanifolds, shellable but not
extendably shellable examples exist [12, Exercise 7.37] [51, Section 5.3] [92]. Since, for a 1-simplicial
complex, or a graph, shellability, extendable shellability and connectivity are equivalent, dimension
two is the smallest interesting case to consider. (For more information on shellability, extendable
shellability and other combinatorial topological properties, see [13] [25] [97] [106] [107]).

The first topic of this chapter is shellable but not extendably shellable 2-simplicial complexes
(Section 5.3). First, we give new examples of such kind. Among them are examples smaller than

those in the literature, and we have checked their minimality by enumeration:

Theorem 5.1. The two 2-simplicial complexes V6F9-1, 2 with 6 vertices and 9 facets are shellable
but not extendably shellable (Exzample 5.5). There is no 2-simplicial complex with less than 6

vertices or less than 9 facets having this property.

Next, we show operations to make larger shellable but not extendably shellable 2-simplicial
complexes from smaller ones, and show the relation among the examples with respect to these
operations or set inclusion (Propositions 5.10, 5.14, Remark 5.11).

A pure simplicial complex is vertez decomposable if there is a total order of vertices accord-
ing to which the facets including the vertex can be nicely removed. This is another operation
for breaking (or constructing) simplicial complexes inductively. Vertex decomposability was first
introduced by Billera & Provan [11] [81] in connection with the Hirsch conjecture (see also [13]).
Vertex decomposability implies shellability. If all boundary complexes of polytopes were vertex
decomposable, then this implied the Hirsch conjecture. However, polyhedra whose boundary com-
plexes are not vertex decomposable (but shellable) have been found [66] [81]. Shellable but not
vertex decomposable simplicial complexes begin to exist from 2-simplicial complexes which are not
pseudomanifolds [51, Section 5.3] [92].

The second topic of this chapter is shellable but not vertex decomposable 2-simplicial complexes
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(Section 5.4). First, we give new examples of such kind. They have the same size as the smallest

example in the literature, and we have checked their minimality by enumeration:

Theorem 5.2. The three 2-simplicial complexes V6F10-1, 6,7 with 6 vertices and 10 facets are
shellable but not vertex decomposable (Example 5.15). There is no 2-simplicial complex with less
than 6 vertices or with 6 vertices and less than 10 facets having this property. Furthermore, V6F10-1

is not extendably shellable, but V6F10-6,7 are extendably shellable.

Vertex decomposable but not extendably shellable simplicial complexes have been known (V6F11-3
[12, Exercise 7.37], for example). On the other hand, our extendably shellable but not vertex de-
composable examples are new. From these examples, we know that these two properties stronger

than shellability do not have logical implications each other:

Corollary 5.3. Neither extendable shellability nor vertex decomposability implies the other (Corollary
5.16).

The examples in this chapter were generated using a computer. In the final part (Section 5.5),
we propose a rather efficient algorithm to enumerate shellable 2-simplicial complexes which are
not pseudomanifolds (Algorithm 5.20, Theorem 5.21). It generates one example per each class
consisting of those identical with respect to the relabeling of vertices.

The study in this chapter is an expansion of [75].

5.2 Definitions and basic properties

Let V = {1,...,n} be a finite set. An (abstract) simplicial complez is a set A consisiting of
subsets of V such that if 0 € A, 7 C 0 then 7 € A. An element of A is a face. A facet is a face
maximal with respect to set inclusion. An element of V is a vertex. The dimension of a face o is
dim o = |o| — 1. The dimension of a simplicial complex A is max,ca dimo. A simplicial complex
is pure if all facets have the same dimension. A ridge of a pure simplicial complex is a face having
dimension dim A — 1. A pure simplicial complex is a pseudomanifold if any ridge is included in at
most two facets. If not, it is a nonpseudomanifold. A boundary ridge is a ridge contained in only
one facet, and a facet containing a boundary ridge is a boundary facet. A d-dimensional simplicial
complex, pseudomanifold, etc. will be denoted d-simplicial complex, d-pseudomanifold, etc. Two
simplicial complexes which become identical by relabeling the vertices are called isomorphic, and

are regarded as the same.

A partial shelling of a pure d-simplicial complex A is a sequence Fi, ..., F; of a subset of facets
satisfying
i—1
F;n U F; | is apure (d— 1)-simplicial complex (1< i <¥), (%)
j=1

where & = {7 € A : 7 C o}. A shelling is a partial shelling consisting of all of the facets of
A. A pure simplicial complex is shellable if it has a shelling. A partial shelling is extendable if
there exists a shelling beginning from it. A maximal not extendable partial shelling is called stuck.
A simplicial complex is extendably shellable if any partial shelling is extendable. In other words,

extendable shellability means that we can find a shelling by adding facets in a greedy manner.
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The link of a face 0 € A is linka(o) ={r € A:ocU7T € Ao N7 = 0}. The deletion of a face
o€ Aisdelp(oc) = {r € A: 0N 71 =0} A pure simplicial complex A is vertex decomposable if it
has only one facet, or if it has a vertex ¢ with both linka ({¢}) and dela ({z}) vertex decomposable.
A vertex decomposable simplicial complex is shellable.

We are interested in the case of dimension two. When a 2-simplicial complex has a 2-dimensional
ball (resp. 2-dimensional sphere) as its realization, we simply call it a 2-ball (resp. 2-sphere). For

the top dimensional element hs of the h-vector (or the reduced Euler characteristic), we have
hs = #facets — #ridges (or edges) + #vertices — 1

(see, for example, [106, Chapter 8]).
For a 1-simplicial complex, shellability, extendable shellability, vertex decomposability, and

connectivity are equivalent. This kind of simple situation holds until the case of 2-pseudomanifolds:

Theorem 5.4 ([26]). For a 2-pseudomanifold, shellability, extendable shellability, vertex decom-

posability, and being a 2-ball or a 2-sphere are equivalent.

5.3 Shellable but not extendably shellable simplicial complexes

5.3.1 Examples

We first give shellable but not extendably shellable 2-simplicial complexes found using the enumer-
ation technique in Section 5.5. They include two known examples. Another larger known example
V7F13 and two smaller examples V7F12,V7F11 made reversing the operation in Proposition 5.10

are also listed.

Example 5.5. The following is a list of shellable but not extendably shellable 2-simplicial com-
plexzes. The list covers all such examples with less than 6 vertices, 6 vertices and at most 10 facets,
or less than 9 facets, up to isomorphism. (Such examples do not exist for less than 6 vertices or less
than 9 facets.) For the labeling, for example, V6F9-1 indicates the 1st example with 6 vertices and
9 facets. The 2-simplicial complexes are given as lists of facets, and boundary facets are printed
in bold font. After the facets, are given the boundary ridges and all of the stuck partial shellings

(unsorted, as sets) of the examples.

V6F9-1 124,126,134,135, 245, 256, 346, 356, 456
boundary ridges : 15,16

stuck partial shelling : {124,126,134,135}
V6F9-2 123,126, 135, 234, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {123,126,135,234}
V6F10-1 [92] 123,124,126, 134,135, 245, 256, 346, 356, 456
boundary ridges : 15,16, 23

stuck partial shelling : {123,124,126,134,135}
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V6F10-2 124,126,134,135, 236, 245, 256, 346, 356, 456

boundary ridges : 15,16, 23

stuck partial shelling : {124,126,134,135}

V6F10-3 123,126,134,135, 234, 245,256, 346, 356, 456

boundary ridges : 14,15,16

stuck partial shelling : {123,126,134,135,234}

V6F10-4 123,126, 135, 146, 234, 245, 256, 346, 356, 456

boundary ridges : 14,15,

stuck partial shellings : {123,126,135,234},
{123,126,135,146}

V6F10-5 124,126,134,135,234, 245,256, 346, 356, 456

boundary ridges : 15,16, 23

stuck partial shelling : {124,126,134,135, 234}

V6F11-1 124,126, 134,135, 235, 236, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {124,126,134,135}

V6F11-2 123,124,126, 134, 135, 234, 245, 256, 346, 356, 456

boundary ridges : 15,16

stuck partial shelling : {123,124,126,134,135,234}
V6F11-3 123,126,135, 145, 146, 234, 245, 256, 346, 356, 456

[12, Exercise 7.37] | boundary ridges:

stuck partial shelling : {123,126,135,234}

V7F11 a=125b=126,c = 127,e = 145, f = 167, h = 235,
i =236,5 = 247,k = 356,] = 457, m = 567
boundary ridges : 14,24

stuck partial shelling : {e, 3, k,1,m}

VTF12 a=125b=126,c = 127,e = 145, f = 167,g = 234,
h =235,i = 236,57 = 247,k = 356,1 = 457, m = 567
boundary ridges : 14, 34

stuck partial shellings : {e,g,1,3j,1},{e,g,3,1,m},

{e,j,k,1,m}
V7F13 a=125b=126,c =127,d = 134,e = 145, f = 167,
[51, Section 5.3] g =234,h = 235,71 = 236,5 = 247,k = 356,] = 457,
m = 567

boundary ridge : 13

stuck partial shellings : {a,b,d,e,l},{a,d,e,l,m},
{e,j,k,l,m},{a,b,c,d,e, f},{d, e, g,i,7,1},
{d,e, g,3,l,m},{d, g, h,i,3,k},{d, g,h,i,k,m}

Checking that these examples are shellable but not extendably shellable was also done using a
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computer. However, for examples V6F9-1,2, V6F10-1,3,4,5, V7F11, V7F12 or V7F13, Lemma 5.6
below gives a proof of not being extendably shellable. This observation can be found, for example,
in [97, Section IIIL.2].

Lemma 5.6. Let A be a shellable 2-simplicial complex with hs = 0. Then, the final facet in any of
its shelling is a boundary facet. If there exists a proper partial shelling including all of the boundary

facets, it does not extend to a shelling of A, and A is not extendably shellable.

As can be observed from the examples, stuck partial shellings not including all of the boundary

facets also exist.

Remark 5.7. Topological drawings of V6F9-1, 2 are shown below. The boundary ridges are drawn
in bold lines. The two examples differ only in the way the quadrilateral 1243 is triangulated. In
V6F9-1 it is triangulated 124,134, whereas in V6F9-2 it is triangulated 123,234.

1

0aY)

V6F9- 1 V6F9- 2

Remark 5.8. All examples except V6F11-3 in Example 5.5 can be realized as geometric simplicial
complexes without self intersection in three dimensional space. However, V6F11-3 cannot, because
the subcomplex made by removing the facet 456 is the two dimensional projective space [12, Ezercise
7.37].

Remark 5.9. Diagonal flips do not necessarily preserve the property shellable but not extendably
shellable. For example, the 2-simplicial complex with facets 124,126,134,137, 245,256, 346, 356,
357,456, made by stellar subdivision of edge 15 in V6F9-1, is shellable but not extendably shellable.
However, if we flip edge 26 to 15, removing facets 126,256, and adding facets 125,156 instead, the

new 2-simplicial complex becomes shellable and extendably shellable.

5.3.2 Relations

The following proposition gives a way to enlarge a shellable but not extendably shellable example,

keeping a stuck partial shelling.

Proposition 5.10. Let A be a shellable but not extendably shellable pure d-simplicial complezx with
Fy,...,F; a stuck partial shelling. Takeo & A, dimo = d with N A being a pure (d—1)-simplicial

complez.

(i) Ifen (U;":1 E) is not a pure (d — 1)-simplicial complez, then A UG is shellable but not
extendably shellable with Fi, ..., F; a stuck partial shelling.
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(ii) Ifon (Uj’:1 E) is a pure (d — 1)-simplicial complez and (E\ (U;‘.:1 E)) NA =0 (which is
equivalent for the T satisfying (E\ (U;-:1 f])) ={n:7CnCo}beingT & A), then AUT
is shellable but not extendably shellable with Fi,. .., F;,0 a stuck partial shelling.

Remark 5.11. The operations in Proposition 5.10 defines relations between shellable but not ez-

tendably shellable examples. The ten examples V6F9-1, 2, V6F10-1,...,5, V6F11-1,..., 3 are related

by these operations as in the figure below.

V6F10- 1

(ii) 234
234

('Si non)
V6F10- 2 7\, VBF11- 1 oo
(i) 123
V6F10-5 12—/ 3 V6F11- 2
(i) o

(i) 124 LN

V6F10- 3 V6F11- 3
(Bj orner)

Remark 5.12. If the vetrices of o belong to A, and A includes all of the d-subsets (i.e. possible

‘T

ridges) or one less than that, we do not have to check the condition N A being a pure (d —
1)-simplicial complez” in Proposition 5.10. This is the case for the operations among ezamples

V6F9-1,2, V6F10-1,...,5, V6F11-1,...,3 in Remark 5.11.

Another relation between the examples to consider is the set inclusion. We show some properties
of minimal examples with respect to this relation.

A homology facet in a shelling is a facet with any of its proper subface included in some
preceding facet in the shelling. If o is a homology facet in some shelling of a simplicial complex A,
by simply removing o, a shelling of A \ {o} can be made. In a shelling of a 2-simplicial complex,

each homology facet contributes one to hs.

Lemma 5.13. Among the shellable but not extendably shellable 2-simplicial complexes, let A be
a minimal one with respect to set inclusion. Then any proper partial shelling of A is extend-
ably shellable. Thus any stuck partial shelling is extendably shellable. Furthermore, stuck partial

shellings of A do mot contain 2-spheres as subcomplezxes.

Proof. Straightforward. |

Proposition 5.14. Among the shellable but not extendably shellable 2-simplicial complezes, let A

be a minimal one with respect to set inclusion. Then A does not contain 2-spheres as subcomplezes.

Proof. Straightforward. O

Remark that V6F9-1,2,V7F11 are minimal with respect to set inclusion. Other interesting
questions to consider might be (1) if minimal examples have hg = 0 (i.e. do not contain “homology
2-spheres”), (2) if minimal examples have the least number of facets for fixed number of vertices,
or (3) if stuck partial shellings of such examples contain all of the boundary facets. Dealing with

the relations by the operations in Proposition 5.10 is another interseting subject.
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5.4 Shellable but not vertex decomposable simplicial complexes

We first give shellable but not vertex decomposable 2-simplicial complexes found using the enumer-
ation technique in Section 5.5. They include one known example. Another larger known example
V7F13 is also listed.

Example 5.15. The following is a list of shellable but not vertex decomposable 2-simplicial com-
plexes. The list covers all such examples with less than 6 vertices, 6 vertices and at most 10 facets,
or less than 9 facets, up to isomorphism. (Such examples do not exist for less than 6 vertices or
less than 9 facets.) The 2-simplicial complezes are given as lists of facets, and boundary facets are
printed in bold font. After the facets, are given the boundary ridges. Examples V6F10-6,7 are not

vertex decomposable but extendably shellable.

V6F10-1 [92] see Ezample 5.5

V6F10-6 123,124,125,134,136, 245, 256, 346, 356, 456
boundary ridges : 15, 16,23, 26, 35

V6F10-7 123,125,126,134, 145,234, 256, 346, 356, 456

boundary ridges : 16,24, 35
V7F13 [51, Section 5.3] | see Example 5.5

Checking that these examples are shellable but not vertex decomposable was also done using a
computer.

Extendable shellability and vertex decomposability are both properties stronger than shella-
bility. Vertex decomposable but not extendably shellable simplicial complexes have been known
(V6F11-3 [12, Exercise 7.37], for example). On the other hand, examples V6F10-6,7 show the
existence of extendably shellable but not vertex decomposable ones. Thus we know there are no

implication between these two properties.
Corollary 5.16. Neither extendable shellability nor vertex decomposability implies the other.

Remark 5.17. All examples in Example 5.15 can be realized as geometric simplicial complezes

without self intersection in three dimensional space.

Remark 5.18. Diagonal flips do not necessarily preserve the property shellable but not vertez de-
composable. For example, the 2-simplicial complex with facets 123,124,126,134,135,157,245, 256,
346, 356,456, made by adding a 2-simplex 157 to the boundary edge 15 in V6F10-1, is shellable but
not vertez decomposable. However, if we flip edge 15 to 37, removing facets 135,157, and adding

facets 137,357 instead, the new 2-simplicial complex becomes shellable and vertex decomposable.

5.5 Enumeration of shellable nonpseudomanifolds

We call the 2-simplicial complex with five vertices 1,...,5 and three facets 123, 124, 125 the initial
simplicial complex, and denote it by Ajnitia1. This is the minimal 2-nonpseudomanifold. For a

2-simplicial complex, we also call a subcomplex isomorphic to Ajpitiar an initial simplicial complez.
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Proposition 5.19. For any shellable 2-nonpseudomanifold A, there exists a shelling beginning

from one of its initial simplicial complezes.
Proof. Straightforward. O

Algorithm 5.20. Begin from Ainitia1- Add facets one by one in a shelling manner (i.e. satisfying
(%) in Section 5.2). The shellable nonpseudomanifolds with v vertices and f facets are made from

those with v or v — 1 vertices and f — 1 facets.

Theorem 5.21. Algorithm 5.20 enumerates shellable 2-simplicial complexes which are not pseu-

domanifolds.
Proof. Proposition 5.19. O

During the enumeration, for each size of vertices and facets, we only want to output one

simplicial complex among the isomorphic ones. This can be done using the following lemma.

Lemma 5.22. We can find a canonical (e.g. lexicographically minimal) labeling with respect to

isomorphism of a 2-simplicial complex with v vertices and f facets in O(vlvf) time.

Proof. Consider the vertex facet incidence matrix. Make all copies for the v! different vertex

labelings. Remark that v < f + 2 for the examples we are interested in. Use radix sort. O

Finally, the numbers of isomorphism classes of shellable nonpseudomanifolds we enumerated

are shown in Table 5.1.

# of # of facets
vertices |3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 113 4 4 2 1 1

6 2 8 23 51 100 170 254 269 233 157 93 43 21 7 3 1 1
7 8 42 167 535 1628 4722 ...

8 27 217 1114

9 109 1106

10 447

Table 5.1: The number of isomorphism classes of shellable two dimensional nonpseudomanifolds

with specified numbers of vertices and facets.

5.6 Conclusion

We showed small examples (including minimal ones) showing difference between shellability, ex-
tendable shellability, and vertex decomposability. Shellable but not extendably shellable ones were
smaller than those previously known. Shellable but not vertex decomposable ones included extend-
ably shellable ones, which shows that neither extendable shellability nor vertex decomposability

implies the other. We also discussed on topological properties of minimal examples, and on the
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enumeration of shellable nonpseudomanifolds. This is an important starting step, but still we need

to understand what is happening. Nice questions to begin by might be the following:

e Are there “minimal examples” in the sense that we can construct all other examples on
basis of those? What (topological) properties do “minimal examples” have? How about a

“forbidden minor approach”?
Another problem, which was the motivation of this study, but still unsolved is the following:

e What is the computational complexity of deciding shellability, extendable shellability, or
vertex decomposability of a given (two dimensional) simplicial complex? Are they NP-

complete?
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Chapter 6

Computational approaches for triangulations

Summaries of our results and their possible applications were discussed in Chapter 1. Evaluations
of our results and indications on future studies appeared in the concluding sections of Chapters 2
to 5. We avoid repeating them, but discuss here on an approach in this study: using computers to
generate and test examples.

Using computers for triangulations. Recently, there have been some works using comput-
ers for solving combinatorial geometric problems of triangulations (as those problems treated in
this thesis) [31] [67] [72] [101] [102] [105]. (Of course, there have been many works using triangu-
lations in computational geometry.) We exploited several of these previous results and also used
new algorithms. Extensive use of computer for combinatorial geometric aspects of triangulations
is a peculiarity of this work.

Generating and testing examples. We have been interested in differences between classes
of objects or properties, such as, dissections and triangulations, regular triangulations and nonreg-
ular triangulations, shellings and geometric shellings, and shellability, extendable shellability and
vertex decomposability. A large portion of this thesis was giving concrete examples showing these
differences.

These examples were sometimes generated and almost always tested using a computer. Com-
putations using computers do not produce meaningful examples automatically, but they do help.
On the other hand, computers are indispensable when checking examples.

Algorithmic approaches. Some of the algorithms we used for generating or testing triangula-
tions are based on other established techniques such as integer programming or linear programming.

Main programs used in this study are listed with the techniques behind them:
Chapter 2:
e enumerating triangulations: [105] by enumeration of maximal independent sets, [82],
e enumerating dissections: [105] by enumeration of maximal independent sets,
e finding minimal/maximal triangulations: [31] [101] [102] by integer programming,
Chapter 3:

e deciding regularity of a triangulation: by linear programming,
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e computing the solutions of a dual problem: convex hull computations [3] [42] [22],
Chapter 5:

e enumerating shellable 2-nonpseudomanifolds,

e enumerating shellings/deciding shellability,

¢ deciding vertex decomposability.

The approach using a computer benefits when the problem is beyond our initial intuition, but
in reach of computer power. The works in this thesis show benefits thus obtained. Assembling
programs and examples on triangualations, as in the POLYMAKE [58] project for polytopes, must

lead to further results in this direction.
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Appendix A

More generalizations of triangulations

Two more generalization of triangulations not given in chapter 1 are discussed. Each section
introduces a generalization of triangulations and discuss their applications and properties of in-
terest, though restricting mainly to those subjects relevant to our results. Our results might give

suggestions on designing algorithms for these applications.



A.1 Pseudo-triangulations

A.1.1 Definitions and examples

Pseudo-triangulations (or geodesic triangulations) (see [79]) are generalizations of triangulations
in dimension two. The given polygon is partitioned into pseudo-triangles. A pseudo-triangle is a
polygon with three vertices having internal angles less than 7 and the other vertices at least 7. A

triangle is a pseudo-triangle, and a triangulation is a pseudo-triangulation.

Definition A.l. Given points p1,...,p, € R? and a (possibly nonconver) polygon including these
points and with vertices among the points, a set of pseudo-triangles with vertices among these points
is a pseudo-triangulation if (1) any pair of pseudo-triangles have no interior point in common, (2)

the union of the pseudo-triangles is equal to the polygon, and (3) any point appears as a vertex of

A A

Figure A.1: Pseudo-triangles.

JNJAN

Figure A.2: A triangulation and a pseudo-triangulation

some pseudo-triangle.

A.1.2 Applications
Kinetic data structure

Pseudo-triangulations form a superclass of triangulations. They have been used in ray shooting [21]
[47] or visibility [80] [78]. Recently, they have been applied to kinetic data structure for collision
detection [1] [64] [65] [98].
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A.1.3 Properties and questions
Size and complexity

By the size of a pseudo-triangulation, we mean the number of pseudo-triangles in it. For any
point configuration of n points in general position (i.e. no three points on a line) and a simple
polygon (i.e. without holes) including the points and with vertices among the points, the pseudo-
triangulation has size at least n — 2. There always exist pseudo-triangulations of this size n — 2,
and we call them minimal.

The degree of a pseudo-triangulation is the largest number of edges sharing a vertex. Among
the minimal pseudo-triangles, one of the next objective becomes to find one with minimal degree.
For any point configuration in general position and a convex polygon, differently from the case of
triangulations, the degree of (minimal) pseudo-triangulations can be bounded by a constant six

[61]. This locality property is needed when applied to kinetic data structure.

A.1.4 Our contribution

We give a point configuration in general position and a convex polygon, any of their minimal

pseudo-triangulations has degree at least five [61].

A.2 Oriented matroid triangulations

A.2.1 Definitions

Oriented matroids are combinatorial abstractions of point configurations (see [15] for the termi-
nology in this section). Any point configuration defines a (realizable) oriented matroid. In the
oriented matroid level, we forget the coordinates of the points, but still keep some information
on the original point configuration, namely the affine dependencies. Triangulations have been

extended to this abstract level:

Definition A.2 ([10]). Let M be an acyclic oriented matroid of rank d+ 1 on a set V. A non-
empty collection A of bases of M is a triangulation of M if it satisfies

o for every single element extension M U p of M and every o,7 € A, p € convaup(o) N

conv pup(7) tmplies p € convaqup(o N T);
o ifo,7 € A, then 0 N T is a common face of the two restrictions M(o) and M(7);
e ifg € A, then each facet of M(c) is either a facet of M or is contained in precisely two cells

of A.

A.2.2 Backgrounds

The study of triangulations of oriented matroids started from [10]. Recently, extensive study

especially on lifting triangulations has been done in [87].
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A.2.3 Properties and questions
Regularity

As discussed in Section 1.1.3, regularity is an important issue for triangulations (with coordinates).
In oriented matroid triangulations, lifting triangulation is a similar but different subject. The
oriented matroid counterpart of regular triangulations must be important but is not yet well

understood.

A.2.4 Our contribution

We study what regularity means for oriented matroid triangulations. For this aim, we introduce the
idea of “circuits of circuits”. We also study how strong information oriented matroid triangulations

have, and use them for classifying point configurations [60].
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